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Preface by Editor-in-Chief

This is the first volume in a new Journal entitled “LNCS Transactions on Petri
Nets and Other Models of Concurrency (ToPNoC)”. The volume contains revised
and extended versions a selection of the best papers from the workshops at
the “28th International Conference on Application and Theory of Petri Nets
and Other Models of Concurrency”, which took place in Siedlce, Poland, June
25–29, 2007.

As Editor-in-Chief of ToPNoC, I would like to thank the two editors of this
special issue: Wil van der Aalst and Jonathan Billington. Moreover, I would like
to thank all authors, reviewers, and the organizers of the workshops that served
as a basis for this first ToPNoC volume.

August 2008 Kurt Jensen
Editor-in-Chief

LNCS Transactions on Petri Nets and Other Models of Concurrency (ToPNoC)



LNCS Transactions on Petri Nets and Other
Models of Concurrency: Aims and Scope

ToPNoC aims to publish papers from all areas of Petri nets and other models
of concurrency ranging from theoretical work to tool support and industrial
applications.

The foundation of Petri nets was laid by the pioneering work of Carl Adam
Petri and his colleagues in the early 1960s. Since then, an enormous amount of
material has been developed and published in journals and books and presented
at workshops and conferences.

The annual International Conference on Application and Theory of Petri Nets
and Other Models of Concurrency started in 1980. The International Petri Net
Bibliography maintained by the Petri Net Newsletter contains close to 10,000
different entries, and the International Petri Net Mailing List has 1,500 sub-
scribers. For more information on the International Petri Net community, see:
http://www.informatik.uni-hamburg.de/TGI/PetriNets/

All issues of ToPNoC are LNCS volumes. Hence they appear in all large
libraries and are also accessible in LNCS Online (electronically). Simultaneously
the ToPNoC volumes form a Journal, and it is possible to subscribe to ToPNoC
without subscribing to the rest of LNCS.

ToPNoC contains:

– Revised versions of a selection of the best papers from workshops and tuto-
rials at the annual Petri net conferences

– Special sections/issues within particular subareas (similar to those published
in the Advances in Petri Nets series)

– Other papers invited for publication in ToPNoC
– Papers submitted directly to ToPNoC by their authors

Like all other journals, ToPNoC has an Editorial Board, which is responsible
for the quality of the journal. The members of the board assist in the reviewing
of papers submitted or invited for publication in ToPNoC. Moreover, they may
make recommendations concerning collections of papers proposed for inclusion
in ToPNoC as special sections/issues. The Editorial Board consists of prominent
researchers within the Petri net community and in related fields.

Topics

System design and verification using nets; analysis and synthesis, structure and
behavior of nets; relationships between net theory and other approaches; causal-
ity/partial order theory of concurrency; net-based semantical, logical and alge-
braic calculi; symbolic net representation (graphical or textual); computer tools
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for nets; experience with using nets, case studies; educational issues related to
nets; higher level net models; timed and stochastic nets; and standardization of
nets.

Applications of nets to different kinds of systems and application fields, e.g.:
flexible manufacturing systems, real-time systems, embedded systems, defence
systems, biological systems, health and medical systems, environmental systems,
hardware structures, telecommunications, railway networks, office automation,
workflows, supervisory control, protocols and networks, the Internet, e-commerce
and trading, programming languages, performance evaluation, and operations
research.

For more information about ToPNoC, please see: www.springer.com/lncs/
topnoc

Submission of Manuscripts

Manuscripts should follow LNCS formatting guidelines, and should be submitted
as PDF or zipped PostScript files to ToPNoC@cs.au.dk. All queries should be
addressed to the same e-mail address.
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Preface by Guest Editors

This inaugural issue of ToPNoC contains revised and extended versions of a
selection of the best papers from the workshops held at the 28th International
Conference on Application and Theory of Petri Nets and Other Models of Con-
currency, which took place in Siedlce, Poland, June 25–29, 2007. The best papers
were selected in close cooperation with the chairs of the workshops, and their
authors were invited to submit improved and extended versions. After a rigorous
review process we selected the 13 papers in this first issue.

We are indebted to the Program Committees of the workshops and in partic-
ular the workshop chairs. Without their competent and enthusiastic work this
volume would not have been possible. Many members of the PCs participated
in reviewing the revised and extended papers considered for this issue.

Papers from the following workshops were considered when selecting the best
papers:

– The Workshop on Teaching Concurrency (TeaConc’2007) organized by Luis
Gomes (Portugal) and Søren Christensen (Denmark).

– The International Workshop on Petri Nets and Software Engineering
(PNSE’07) organized by Daniel Moldt (Germany), Fabrice Kordon (France),
Kees van Hee (The Netherlands), José-Manuel Colom (Spain), and Rémi
Bastide (France).

– The Workshop on Petri Net Standards 2007 organized by Ekkart Kindler
(Denmark) and Laure Petrucci (Paris).

– The International Workshop on Formal Approaches to Business Processes
and Web Services (FABPWS’07) organized by Kees van Hee, Wolfgang
Reisig, and Karsten Wolf.

– The Workshop on Unfolding and Partial Order Techniques (UFO’07) orga-
nized by Eric Fabre (France) and Victor Khomenko (UK).

Thanks to the support of the workshops chairs and their PC members, we
were able to select a set of high-quality papers. Moreover, we also invited a paper
based on the tutorial “Elasticity and Petri nets” given in Siedlce.

All invited papers were reviewed by three or four referees. We followed the
principle of also asking for “fresh” reviews of the revised papers, i.e., from referees
who had not been involved initially in reviewing the papers. Some papers were
accepted or rejected after the first round of reviewing while the authors of others
were asked to make a major revision which was then accepted or rejected after
a second round of reviewing. We thank the reviewers and authors for doing an
outstanding job.

In the end 13 papers were accepted out of the 17 initially considered as best
papers. (Note that the workshops accepted about 50 papers in total and that
the number of submissions to these workshops was considerably higher.)
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The first four papers of this issue originated from the Workshop on Teach-
ing Concurrency. “Constructive Alignment for Teaching Model-Based Design for
Concurrency” by Claus Brabrand, “Teaching Modelling and Validation of Con-
current Systems using Coloured Petri Nets” by Lars Kristensen and Kurt Jensen,
and “Teaching Concurrency Concepts to Freshmen” by Holger Hermanns and
Christian Eisentraut provide interesting views on teaching concurrency-related
topics and show that more research into the way that we teach concurrency is
justified. In “TAPAs: a Tool for the Analysis of Process Algebras”, Francesco
Calzolai et al. present a tool for the analysis of concurrent systems and report
their experiences with using this tool in teaching.

The next six papers were originally presented at the PNSE workshop. Kris-
tian Lassen and Boudewijn van Dongen report on a new form of process discovery
where explicit causalities in the form of Message Sequence Charts are taken into
account in “Translating Message Sequence Charts to Other Process Languages
Using Process Mining”. The paper “Net Components for the Integration of Pro-
cess Mining into Agent-Oriented Software Engineering”, by Lawrence Cabac and
Nicolas Denz, uses an original combination of two Petri-net-based tools, Renew
and ProM, to link agents and mining.

Dahmani Djaouida et al. present a Petri-net variant incorporating time, give
formal semantics, and propose an analysis technique in their paper “Time Re-
cursive Petri Nets”.

In “Designing Case Handling Systems” Kees van Hee et al. combine Petri
nets, XML, and the relational data model to describe and enact case handling
processes. Isaac Corro Ramos and his co-authors focus on testing systems with
a known process structure in “Model-Driven Testing Based on Test History”.
They investigate both exhaustive testing and a statistical release procedure.

The paper “Assessing State Spaces Using Petri-Net Synthesis and Attribute-
Based Visualization” by Eric Verbeek et al. focuses on the visualization of state
spaces which are too large to show as a classical graph. Moreover, regions are
used to extract the labeling structure needed for this visualization.

The next two papers were originally presented at the UFO workshop. Mo-
tivated by automated planning problems, Blai Bonet et al. present an analysis
approach that combines Petri net unfolding with artificial intelligence heuristics
to improve the performance of searching for a goal state in “Directed Unfold-
ing of Petri Nets”. In their paper, “McMillan’s Complete Prefix for Contextual
Nets”, Paolo Baldan et al. present a new algorithm that allows for unfolding a
larger class of contextual nets (i.e., Petri nets with test arcs) where the unfolding
is again a contextual net.

Finally, “Elasticity and Petri Nets” by Jordi Cortadella et al. describes meth-
ods for modelling, performance analysis, and optimization of elastic systems us-
ing (extended) marked graphs.

The above 13 papers cover a wide range of concurrency-related topics ranging
from process mining and performance analysis to verification and model checking
in application domains that include the design of hardware systems and business
process management. Insight is also gained into how concurrency topics can be
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taught at tertiary level. Therefore, this volume provides a useful blend of theory,
practice and tools related to concurrency research.

August 2008 Wil van der Aalst
Jonathan Billington

Guest Editors, Inaugural Issue of ToPNoC



Organization of This Issue

Guest Editors

Wil van der Aalst, The Netherlands
Jonathan Billington, Australia

Co-chairs of the Workshops

Luis Gomes (Portugal)
Søren Christensen (Denmark)
Daniel Moldt (Germany)
Fabrice Kordon (France)
Kees van Hee (The Netherlands)
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Constructive Alignment for Teaching
Model-Based Design for Concurrency
(A Case-Study on Implementing Alignment in

Computer Science)

Claus Brabrand

IT University of Copenhagen,
Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark

brabrand@itu.dk
http://www.itu.dk/people/brabrand/

Abstract. “How can we make sure our students learn what we want
them to?” is the number one question in teaching. This paper is intended
to provide the reader with: (i) a general answer to this question based
on The Theory of Constructive Alignment by John Biggs; (ii) relevant
insights for bringing this answer from theory to practice; and (iii) specific
insights and experiences from using constructive alignment in teaching
model-based design for concurrency (as a case study in implementing
alignment).

Keywords: teaching, student learning, constructive alignment, the SOLO
taxonomy, model-based design for concurrency.

1 Introduction

This paper is intended to show how The Theory of Constructive Alignment [2]
provides a compelling answer to the number one question in teaching:

“How can we make sure our students learn what we want them to?” (Q1)

Specifically, to illustrate how the theory can be used in the context of teaching
model-based design for concurrency, to guide and maximize student learning;
and, to provide incentive and support for student learning in a direction inten-
tionally chosen by a teacher.

The paper is divided into two parts. Part 1 briefly gives a general introduction
to The Theory of Constructive Alignment and The SOLO Taxonomy [3]. The
essence of this part is also available as a 19-min award-winning short-film by the
author, entitled “Teaching Teaching & Understanding Understanding” [5]. Part
2 is the main part and shows how to apply the theory to a specific case; namely,
to teach five ECTS,1 7 week, undergraduate course on model-based design for
1 European Credit Transfer and Accumulation System (one academic year is 60

ECTS).

K. Jensen, W. van der Aalst, and J. Billington (Eds.): ToPNoC I, LNCS 5100, pp. 1–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.itu.dk/people/brabrand/


2 C. Brabrand

concurrency at the University of Aarhus, Denmark. The course has been taught
four times by the author using FSP [10] for modeling, Java for implementation,
and the book [10] for introducing relevant concepts, problems, and solutions. The
course ran twice before the implementation of alignment (in 2004 and 2005), and
twice after (in 2006 and 2007); each year with a group of 20–30 students. The
paper concludes by giving a comparison of teaching the course “pre-” versus
“post-alignment”.

2 Part 1: The Theory of Constructive Alignment

The Theory of Constructive Alignment [2] provides a compelling answer to (Q1).
The theory is developed by Biggs and has its roots in curriculum theory and con-
structivism [11]; the idea that the learner’s actions define what is learned and
that knowledge is actively constructed by the individual through interaction
with the external world (see [8,13]). It is a systemic theory that regards the total
teaching context as a whole, as a system, wherein all contributing factors and
stakeholders reside. To understand the system, we need to identify and under-
stand the parts of the system and how they interact and affect one another. The
Theory of Constructive Alignment provides just that for the teaching system;
it provides relevant and prototypical models of the parts that ultimately enable
us to predict how the teaching system reacts when we change various aspects
of our teaching. It is also a theory of motivation and of planning that looks at
teaching far beyond what goes on in the classroom and auditorium.

However, before we present constructive alignment as “the solution” to (Q1),
we need to look closer at (models of) the main parts of the system; the students,
the teachers, and of cognitive processes.

As with all models (just like the models we use in concurrency) they might
seem a bit simplistic or crude at first. Nonetheless, they are highly instructive
for us to get an idea of what the system looks like and what causes and effects
we may be up against as a teacher.

2.1 Student Models

In his book, “Teaching for Quality Learning at University” [2], Biggs has identi-
fied and personified two prototypical student models classified according to their
motivation for being at university, immortalized as “Susan and Robert”:

Susan is intrinsically motivated. She likes to get to the bottom of things and
often reflects on possibilities, implications, applications, and consequences of
what she is learning. She uses high-level learning activities such as reflecting,
analyzing, and comparing that continually deepen her understanding.

Robert, on the other hand, is extrinsically motivated. He is not interested in
learning and understanding in itself; he just wants to pass exams, so that he can
get a degree, so he can get a (decent) job. To this end, he will cut any corner,
including sticking with lower-level learning activities, such as identifying, note-
taking, and memorizing as long as they suffice.
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It is important to note that a given student may embody any combination of
these two prototypes and that it may vary according to the area of interest. For
this reason it is often advantageous to think of them as strategies (as in “The
Susan Strategy”), rather than actual persons.

As a teacher, it is not Susan we need to watch out for. Faced with a curriculum,
she basically teaches herself; in fact, we almost cannot prevent her from learning.
Rather, it is Robert we need to pay attention to; in particular, to the learning
activities he is employing (before, during, and after teaching).

Our challenge as a teacher is to engage Robert and get him to use higher-level
learning activities; i.e., make him behave more like Susan. The good news is that
it is actually possible to do something about Robert (or rather, Robert’s learn-
ing). We shall shortly explain how to, systemically speaking, positively change
the system so as to (have him) change his behavior. But before we do that, we
need to look at the situation from a teacher perspective.

2.2 Teacher Models

Biggs [2] also has a few prototypical models of the teachers; this time three (in-
creasingly desirable) models of teachers according to their main focus in teaching,
known as the “three levels of thinking about teaching”:

The level 1 teacher is concerned with what students are. He operates with
a binary perspective; a student is either (inherently) good xor bad. The exam
is a diagnostic means to “sort the good students from the bad” after teaching.
This perspective is essentially deferring the responsibility for lack of learning;
in particular, the teacher can no longer do anything about it: “it’s just the way
students are; either good or bad” (i.e., independent of the teaching).

The level 2 teacher is concerned with what the teacher does. A teacher
at the second level is preoccupied with acquiring an armory of techniques,
“tips’n’tricks” along with visual and technological aides, in order to enhance
his performance. While this perspective is a dramatic improvement to the first,
it is still independent of student learning which is incorporated directly in the
third and final level.

The level 3 teacher is concerned with what a student does (before, during,
and after teaching). He is adopting a student-learning focus and will judge all
pedagogic dispositions according to how they affect student learning.

Again, a given teacher may embody combinations of these characteristics.

2.3 Learning Models

In 1949, one of the most influential American educators, Ralph W. Tyler said:

“Learning takes place through the active behavior of the student: it
is what he does that he learns, not what the teacher does.”
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The idea that knowledge is transmitted from an (active) teacher to a (passive)
learner is dead. There is increasing evidence that what is learned is intimately
tied to which actions are performed by the learner and that knowledge is actively
constructed (see [8,13]). In fact, John Biggs defines good teaching [2] directly as
a function of student activity:

- Quantitative - - Qualitative -
SOLO 2
“uni-structural”:

- paraphrase
- define
- identify
- count
- name
- recite
- follow (simple)
instructions

- ...

SOLO 3
“multi-structural”:

- combine
- classify
- structure
- describe
- enumerate
- list
- do algorithm
- apply method
- ...

SOLO 4
“relational”:

- analyze
- compare
- contrast
- integrate
- relate
- explain causes
- apply theory

(to its domain)
- ...

SOLO 5
“ext’d abstract”:

- theorize
- generalize
- hypothesize
- predict
- judge
- reflect
- transfer theory
(to new domain)

- ...

Fig. 1. Sample competence verbs from “The SOLO Taxonomy”. Improvements in
learning outcomes occur quantitatively at SOLO 2–3 and qualitatively at levels 4–5.

“Good teaching is getting most students to use the higher cognitive
level processes that the more academic students use spontaneously.”

Teaching is about activating students; getting them to use higher cognitive level
processes. For this we need a model of understanding, cognition, and quality of
learning. There are many such models; e.g., “The SOLO Taxonomy” [3], “The
BLOOM Taxonomy” [4],2 and Klopfer’s models of student behavior [9]. However,
I have chosen to present only one of these models, namely The SOLO Taxonomy,
since it has been deliberately constructed for research-based university teaching
and converge on research at its fifth and highest level.

The Structure of the Observed Learning Outcome taxonomy (SOLO [3]), dis-
tinguishes five levels of cognitive processes according to the cognitive processes
required to obtain them. Although there is a close relationship between the levels
of the SOLO taxonomy and the levels in Jean Piaget’s (hypothetical) cognitive
structures, the former was designed to evaluate learning outcomes and cognitive
processes, the latter for describing the developmental stages of individuals, espe-
cially children (see [3,12]). The five levels are (in increasing order of complexity,
each level prerequisitionally building upon the previous):

SOLO 1 (aka. “the pre-structural level”). At the first level, the student
has no understanding, uses irrelevant information, and/or misses the point alto-
gether. Although scattered pieces of information may have been acquired, they
2 “The BLOOM Taxonomy” was originally designed to guide representative selection

of items on a test, rather than evaluating the quality of learning outcomes.
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will be unorganized, unstructured, and essentially void of real content or relation
to a relevant issue or problem.

SOLO 2 (aka. “the uni-structural level”). At the second level, a student
can deal with one single aspect. A student may make obvious connections and
hence have the competence to recite, identify, define, follow simple instructions,
and so on.

SOLO 3 (aka. “the multi-structural level”). A student at level three can
now deal with several aspects, but they are considered independently. A student
may have the competence to enumerate, describe, classify, combine, structure,
execute procedures, and so on.

SOLO 4 (aka. “the relational level”). At the relational level, a student
may now understand relations between several aspects and understand how they
may fit together to form a whole. A student may thus have the competence to
compare, relate, analyze, apply, explain things in terms of causes and effects, and
so on.

SOLO 5 (aka. “the extended abstract level”). At the fifth and highest
level, a student may generalize structure beyond what was given, essentially
producing new knowledge. A student may perceive structure from many differ-
ent perspectives, transfer ideas to new areas, and may have the competence to
generalize, hypothesize, theorize, and so on.

Fig. 1 shows a non-exhaustive list of common verbs from the SOLO taxonomy.

Teacher’s intention

Exam’s assessment

mismatch!

ignored!− to analyze &
− to compare

− to identify &
− to memorize

− to identify &
− to memorize

"dealing with test!"

Student’s activity

(a) An unaligned course.

Teacher’s intention Student’s activity

Exam’s assessment

− to analyze &
− to compare

− to analyze &
− to compare

− to analyze &
− to compare

carefully
aligned!

(b) An aligned course.

Fig. 2. An unaligned vs. aligned course

2.4 Constructive Alignment

We now have the ingredients and models to understand the system and why
constructive alignment is a compelling answer to (Q1).
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Definition (constructive alignment). A course is said to be constructively
aligned [2] when:

– the intended learning outcomes (ILOs) are stated clearly;
– the ILOs are explicitly communicated to the students;
– the exam assessment(s) match the ILOs; and
– the teaching form(s) match the ILOs.

The solution is to constructively align courses (the name “alignment” comes
from the fact that the following elements are all pointing in the same direction):

exam assessment ≈ intended learning outcomes ≈ teaching form

To appreciate this solution, let us first have a look at the problems with an
unaligned course where there is a mismatch between the intended learning out-
comes and the exam assessment. After this, we will see how constructive align-
ment remedies this situation.

Unaligned course. Fig. 2a illustrates an example of an unaligned course. Here,
it is the teacher’s intention that the students learn how to analyze and compare.
However, the nature of the exam used is such that it measures something else; in
this case, the ability to identify and memorize. The problem with this arrange-
ment is that Robert will soon realize the minimal requirements, totally ignore
the teacher’s intended learning outcomes, and only study for what is directly
required of him on the exam. This “backwash effect” is appropriately referred to
as Robert “dealing with the test”.

Aligned course. Fig. 2b depicts an aligned version of the course. Here, the
teacher has carefully aligned the exam with the intended learning outcomes
such that it assesses precisely those (in this case, the ability to analyze and to
compare). We get a commuting diagram; Robert’s goal of passing the course
will invariably lead him past learning the intended objectives. This way, we are
effectively using Robert’s (extrinsic) motivation to pass courses, to make him
learn.

Now Robert is motivated to learn, but he still needs the support. This is
where the form of teaching comes in; the other aspect of constructive alignment
is to also align the teaching form with the intended learning outcomes and exam.
During a course, students would ideally “train towards the exam”. The challenge
then becomes choosing—perhaps several different—adequate forms of teaching
in which the students best practice the skills and competences intended and
measured.

In a constructively aligned course Robert now has the support (from the
teaching form) and incentive (from the exam assessment) to learn like Susan.

This was a brief and general introduction to The Theory of Constructive
Alignment. In the following, we will have a look at how these ideas can be
applied to improve the teaching of a Computer Science course on Model-Based
Design for Concurrency.
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3 Part 2: Constructive Alignment for Teaching
Concurrency

Adhering to the principle of the Chinese Proverb:

“Give a man a fish and he will eat for a day. Teach a man to fish
and he will eat for a lifetime.”

this section will not attempt to present “a perfectly aligned course”, but rather,
to illustrate how the principle of constructive alignment can be useful and used
for judging the relevance of and selecting different forms of assessment and
teaching.

3.1 From Content to Competence

First though, I want to motivate and advocate a shift from thinking courses in
terms of content to thinking in terms of competence.

Content. Traditionally, many courses specify the aims of a course as a content
description; listing course-specific concepts that are “to be understood”. This
was also the case in earlier versions of my concurrency course (before exposure
to the theory of alignment, that is). It essentially stated that the goal of the
course was for the students to understand a bunch of concurrency concepts such
as “interference” and “deadlock” (see Fig. 3a for the exact formulation).

The problem with general “understanding goals” via content descriptions is that
teachers and students may not (in fact, usually do not) have the same inter-
pretation of the intended learning outcomes. Teachers and examiners—being
products of a research-based teaching tradition—will immediately agree; that
what is really meant by “understanding deadlock” is, for instance, the compe-
tence to analyze programs for deadlock, explain possible causes and effects, and
predict consequences of possible solutions. However, this is tacit knowledge. A
student—unfamiliar with the traditions—is likely to interpret the same content
description at an entirely different level; e.g., as the competence to recite condi-
tions for deadlock and name standard solutions. However, even if students and
teachers did agree on an interpretation, we already know from the theory of
alignment, that Robert’s learning activity will still ultimately be dominated by
the constitutional effect of the exam (cf. Fig. 2a).

Competence is inherently operational and captured by verbs as opposed to
content by nouns. Competence is knowledge plus the capacity to act upon it;
to use attained understanding of a topic to inform behavior and act accord-
ingly. The SOLO levels provide a taxonomy of appropriate verbs for describing
intended learning outcomes as a hierarchy of competences. Thus, in our ulti-
mate intended learning outcomes, we are not aiming for (passive) knowledge of
content, but (active) competence.
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Aim:
The purpose is to give the students a thorough knowledge of models, systems, and
concepts in concurrency (cf. contents below), such that this may be used in the
realization of solid solutions to realistic and practical problems.
Contents:
Processes, threads, interaction, interference, synchronization, monitors, deadlock,
safety and liveness properties, forms of communication, and software architecture
for systems and concurrency.

(a) Pre-alignment: course aims (given as a content description).

specifications models implementations

Imaginary: Abstract: Concrete:

validate
models

#2

construct
models

#1 #3

models
implement

S I
M

(b) Course philosophy: the model-based design process.

STEP COMPETENCE: SOLO
no. After the course, students are expected to be able to...: level

n/a • memorize content; 2

#1
• construct models from specifications; 3
• apply standard solutions to common concurrency problems; 4
• relate models and specifications; 4

#2

• test models w.r.t. behavior (using tool support); 2
• define relevant safety/liveness properties for models; 2
• verify models w.r.t. safety/liveness properties (using tools); 3
• analyze models (and programs) w.r.t. behavior; 4
• compare models (and programs) w.r.t. behavior; 4

#3
• implement models in familiar programming languages; and 3
• relate models and implementations. 4

(c) Post-alignment: intended learning outcomes (based on the SOLO taxonomy)

Fig. 3. Pre- and post-alignment course description

3.2 Course Philosophy: Model-Based Design

There is obviously a wide spectrum of perspectives on concurrency and thus
on possible concurrency courses; ranging from the study of abstract categorical
frameworks for concurrency process calculi to semaphore protocol programming.
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However, as hinted in the title of this paper, the overall philosophy and activity
in the course investigated in this paper is centered around models, using a model-
based design approach.

Before presenting the intended learning outcomes as competences based on
The SOLO Taxonomy, I want to spend a few lines on motivation. In general, as
a teacher I need to provide students with a solid answer for what they get out of
following the course; what it is they will be able to do after the course, why that
is important, and what advantages those competences will give them. Also, I
need to spend time communicating this answer to the students. If I cannot “sell
the course” to the students who have not actively elected the course, they will
be less motivated to spend time on it. Thus, when teaching model-based design
for concurrency, I need to provide my students with a solid answer to the (very
appropriate) question:

“Why bother learning about model-based design for concurrency!?”

Here is a short summary of the motivational answer I give my students early on in
the course, motivating a “model-based design approach” to concurrent software
development. Concurrent programming is much more difficult than sequential
programming; systems are inherently non-deterministic and parallel; the con-
currency is conceptually harder to grasp and adds—along with complexity—a
whole new range of potential errors such as interference, deadlock, starvation,
un-intended execution traces, unfairness, and priority inversion. In the presence
of all these errors, models come to the rescue. Models offer a means for offline rea-
soning through a formal modeling language to read, write, and talk about models
(to gain understanding of a system), run-time testing (to gain confidence), and
automatic3 compile-time property verification (to gain safety).

The model-based design process, as depicted in Fig. 3b, advocates that sys-
tems are better built by first constructing models from specifications (step #1),
then validating the models constructed (step #2), and only then implementing
those validated models as concrete systems (step #3). The quality of the final
resulting system constructed is, of course, tied to the “appropriateness” of the
intermediary steps through the models.

3.3 Intended Learning Outcomes

With the overall philosophy of the course in place, I need to operationalize it
and express it in terms of concrete evaluable competences. Here, one needs to
carefully avoid the temptation to use so-called understanding goals (e.g., such
as “to understand X”, “be familiar with Y”, or “have a notion of Z”), for the
simple reason that we cannot measure them. General understanding goals should
be turned into measurable competence. Note that understanding is, of course, a
requisite for competence.

Fig. 3c presents the intended learning outcomes expressed as competences
based on The SOLO Taxonomy and directed towards the students. The descrip-
tion starts with the formulation:
3 “Never send a human to do a machine’s job”, A. Smith (The Matrix, 1999).
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“After the course, students are expected to be able to ...”

Note how this formulation places the learning focus on the students and that it
is directly expressed in terms of competence (i.e., “to be able to. . .”). This line
is then followed by the individual competences to be learned during the course.
The first, “to memorize content” (which is at SOLO level 2) is explicitly included
as a non-goal to send a clear message to the students that this competence will
not help them during the course and exams.

This is followed by the ten actual intended learning outcomes for the course
listed along with their corresponding SOLO level. The competences are divided
into the three steps related to model-based design process (#1 to #3). Note how
each competence is expressed using an active verb (highlighted in boldface) and
a passive noun/noun-phrase, expressing: “what is it the students are expected
to be able to do (verb) with content (noun)”. The application of standard solu-
tions to common concurrency problems covers issues such as semaphores, mutual
exclusion, synchronization, deadlock, and the reader/writer protocol.

I will not go further into the particular choice of intended learning outcomes
here, because this is not the point of this paper. Rather, the point is to show how
such intended learning outcomes can be used to provide incentive and support
for student learning in a direction intentionally chosen by a teacher, as explained
in the following.

3.4 On Aligning the Assessment (with the ILOs)

When I learned about constructive alignment in 2005, the exam of my concur-
rency course consisted of a group project during the last 2 weeks of the course,
and an individual multiple-choice test at the end of the course, each counting
50% towards the final grade. This happened to coincide with my preferences if I
were to choose freely among all reasonable forms of evaluation for measuring the
intended learning outcomes of Fig. 3c, as reported in the following along with
my experiences.

On Aligning the Project. In the pre-alignment courses, it was also my inten-
tion that emphasis be placed on the model-implementation relationship which
had also been clearly communicated to the students. However, since the aims of
the course were given by a traditional content description (Fig. 3a), this was not
reflected in explicit intended learning outcomes, nor was it listed as explicit cri-
teria for project grading. In the end, I received some projects with no apparent
relation between the two. It was as if the construction of the model and imple-
mentation had been approached independently and pursued in two altogether
different directions, defying the whole purpose of model-based design.

In the 2006 course, I tried to apply the idea of constructive alignment. I formu-
lated explicit intended learning outcomes around which the exam was carefully
centered and on which the teaching was based. To relate was explicitly included
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as an intended learning outcome and explicitly included on the exam. The prod-
uct was a project entitled “The Banana Republic” which was a synthesis-oriented
project where the students had to construct a system via the model-based design
paradigm. Figures 7 and 8 show the specification, task, report requirements, and
evaluation criteria of the 2006 project. The project was explicitly designed to
evaluate all the competences of Fig. 3c, except the more analytical competences;
i.e., to analyze and compare models and programs. In my opinion, such compe-
tences are more appropriately evaluated in a multiple-choice test as explained
below. The projects received in 2006 generally had a better correspondence be-
tween model and implementation.

On Aligning the Multiple-Choice Test. The two analytical competences
not directly addressed in the project (to analyze and to compare models and
programs), are more appropriately evaluated in a multiple-choice test. The main
advantage is that in a multiple-choice test one is free to prefabricate (even con-
trived) models whose main purpose is to exhibit more interesting and challeng-
ing aspects and behaviors than the students are likely to come upon during the
model-based construction process. Since I believe these two competences are im-
portant, and not guaranteed to be required in the project, I have to explicitly
examine the students in them. Thus, I have devoted an independent test solely
to them.

I used the multiple choice tool (MCT [7]) to automatically permute ques-
tions and choices, to evaluate the answers, and to ensure that the grading was
statistically robust and based on provably sound principles.

Earlier tests asked seemingly innocent questions such as the one found in
Fig. 4a. Although this seems like a perfectly reasonable question to ask and
for which the students should know the answer, it has dramatic implications
on learning. The problem is that it is possible to get by with memorization.
Hence, Robert is free to “deal with the test” and direct his study effort towards
memorizing content (recall Fig. 2a). Note that information about the sufficiency
of surface understanding may also be rumored by former students exposed to
similar questions in earlier courses.

After the introduction of alignment, later tests were carefully centered around
the competence to analyze and to compare models. For examples of such ques-
tions, see Fig. 4b and 4c. (Please note that we do not expect the reader to
understand the details of the FSP models; for details of the FSP modelling
language, we refer to [10].) It should be obvious that these are high-level ques-
tions for which lower-level activities such as memorization no longer suffice.
By construction, they depend on the capacity to analyze and compare mod-
els. Some questions were also testing the ability to analyze and compare (Java)
programs.

I still use the the memorization question. However, now it instead serves as
a “non-goal”; as an example of a type of question not appearing on the final
multiple-choice exam, hence the strikeout in Fig. 3c.
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What are FSP programs compiled into by the LTSA tool?:

a Stateless Machines.
b Finite State Models.
c Infinite State Models.

(a) Assesses competence: “to memorize content” (i.e., bad alignment).

Given the following FSP model M, safety property S, and liveness property, L:

RESOURCE = (get -> put -> RESOURCE).

P = (printer.get -> (scanner.get -> copy -> printer.put -> scanner.put -> P

|timeout -> printer.put -> P)).

Q = (scanner.get -> (printer.get -> copy -> printer.put -> scanner.put -> Q

|timeout -> scanner.put -> Q)).

||M = (p:P || q:Q || {p,q}::printer:RESOURCE || {p,q}::scanner:RESOURCE).

property S = (p.printer.get -> p.printer.put -> S

|q.printer.get -> q.printer.put -> S).

progress L = {p.copy, q.copy}

Which of the following property relationships are satisfied?:

a M |= S and M |= L (i.e., M satisfies both S and L)
b M |= S and M �|= L (i.e., M satisfies S, but not L)
c M �|= S and M |= L (i.e., M satisfies L, but not S)
d M �|= S and M �|= L (i.e., M satisfies neither S, nor L)

(b) Assesses competence: “to analyze models w.r.t. behavior” (i.e., good alignment).

Let two FSP processes, CRIT and LOCK, be given:

CRIT = (acq->crit->rel->CRIT).

LOCK = (acq->rel->LOCK).

Now, consider the two different systems, SYS1 and SYS2, defined below:

||SYS1 = ({x,y}:CRIT || {x,y}::LOCK).

||SYS2 = ({x,y}::CRIT || {x,y}:LOCK).

Which of the following traces is invalid for SYS1 and valid for SYS2?:

a The empty trace (containing no actions).
b x.acq

c x.acq ; x.rel

d x.acq ; x.crit ; x.rel

e x.acq ; y.crit ; x.rel

(c) Assesses competence: “to compare models w.r.t. behavior” (i.e., good alignment).

Fig. 4. Unaligned and aligned sample multiple-choice questions (each question always
has exactly one correct answer)
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3.5 On Aligning the Teaching Form (with the ILOs)

In constructively aligning my form of teaching, I use a combination of five dif-
ferent teaching activities. Specifically, I use:

1. lectures to introduce the students to fundamental concepts and to show
applications of standard solutions to common concurrency problems in terms
of models and implementations (based on [10]);

2. modeling and programming lab as a means for students to gain hands-
on practical experience in constructing, implementing, testing, and verifying
models, defining properties, and applying standard solutions to common
concurrency problems (here a TA is present and acts as a consultant);

3. theoretical exercise classes as a means for the students to learn how
to apply variations of common solutions to standard problems (here the
students get feedback from a TA who supervises and facilitates the class);

4. weekly hand-ins in the form of small compulsory exercises wherein the
students are asked to construct and implement models with special emphasis
on relating models and implementations (here the students train for the
project and receive individual feedback on their hand-ins from a TA); and

5. multiple-choice sample questions as a means for the students to learn to
analyze and compare models (here the students train for the multiple-choice
exam. The questions are given without the correct answers, to maximize
student activation.

Note how the real training of competences (i.e., practicing of verbs) takes place,
not during the lectures, but in the four other student-centric learning activities.
This disposition is consistent with the ideas of constructivism; that knowledge
is (actively) constructed by the students themselves according to their behavior.
There is a big difference between a student (passively) listening to a lecture on
application and the student performing the applying himself. During the lectures,
I try my best to engage and activate the students using various techniques such
as 1-min papers [1], 2-min neighbor discussions, and a 3-min student structural
recapitulation at the end to encourage active participation. However, such level
2 “tips’n’tricks” are beyond the scope of this paper.

Structurally, the course iterates through the model-based design process many
times with the introduction of each new concurrency concept (a structure also
taken in [10]). The advantage of doing it this way, rather than a division ac-
cording the steps model-based design process (i.e., #1, #2 and #3), is that the
students get to practise the overall process many times over and incorporate in-
sights and feedback from previous the iterations. The project is thus essentially
the last, unsupervised, iteration.

In earlier versions of the course, teaching activities (4) and (5) above were
missing, along with the training in and feedback on those competences. Also,
the lectures (1) were more one-way communication and did not explicitly incor-
porate student activation. Finally, the activities (1), (2), and (3) were never de-
liberately structured around intended learning outcomes (since these were never
consciously established).
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4 Conclusion

In the following, I attempt to compare “pre-” versus “post-alignment” courses and
report my experiences divided into subjective and objective measures. However,
a few reservations should be kept in mind before attempting to reason about the
causes and effects of alignment: there are many factors involved that may vary
from year to year; as all teachers I gain more experience over time, the student
population varies, and the “Susan/Robert ratio” may vary from year to year.
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(a) Student satisfaction.
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(b) Student proficiency.

Fig. 5. Self-reported student satisfaction and confidence (on a 7-step scale): pre-
alignment in gray (Concurrency 2004 and 2005); post-alignment in black (2006 and
2007). Pre-alignment data is not available for student proficiency.

Subjectively, it is my experience that the theory of constructive alignment
provides a solid and constructive answer for (Q1). It provides insights on where
and how to optimize the teaching system for student learning in making sure
the students have the necessary incentive and support for learning. It is also
my own personal experience that the course and the quality of the projects
handed in by the students improved significantly with alignment. Also, before
alignment, I primarily acted on my intuition, whereas alignment has influenced
my behavior and I am now making conscious and informed choices. I am now
aware of different pedagogical possibilities and, perhaps more importantly, of
the implications different dispositions are likely to have on student learning.

Objectively, I have quantitative data from student self-evaluation question-
aires, reporting on student satisfaction (with the teaching) both before and after
the implementation of alignment:

Year No. of students No. of evaluations Percent%

Pre- 2004 29 10 63
alignment 2005 26 24 92
Post- 2006 17 16 94
alignment 2007 22 19 90

In 2004, the evaluations were conducted on the last day which featured a “bonus
lecture” on concurrency abstractions in C++ which was not on the exam curricu-
lum; hence the low attendence and number of evaluations.
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Step Competence Pre-alignment Post-alignment
number (abbreviated): (SOLO levels) (SOLO levels)

n/a • memorize content.. 2 -

#1
• construct models.. 3 3
• apply solutions.. 4 4
• relate model/spec.. - 4

#2

• test models.. 2 2
• define properties.. 2 2
• verify models.. 3 3
• analyze models.. - 4
• compare models.. - 4

#3 • implement models.. 3 3
• relate model/impl.. - 4

Fig. 6. Pre- versus post-alignment courses compared w.r.t. the SOLO levels directly
involved. For each objective; when explicitly tested and trained for, the SOLO level of
the objective is indicated (otherwise, a dash “-” is given).

Figure 5a plots student satisfaction as reported by themselves on a seven-step
scale in a questionnaire at the end of the course; the gray bars depict the distribu-
tion of the answers in the pre-alignment courses (2004 and 2005), while the black
bars illustrate the situation for the post-alignment courses (2006 and 2007). The
students appear slightly more satisfied after alignment which can also be taken to
mean that implementing alignment did not compromise student satisfaction.

However, student satisfaction should not be over-estimated; although a posi-
tive sign, it need not correlate with student learning. It is much more interesting
to compare student self-reported proficiency in the area of study after the course.
Unfortunately, I did not evaluate student proficiency before I got introduced to
educational theories, notably to evaluation theory [6]. Hence, only the post-
alignment (black) data is available as presented in Fig. 5b. Although generally
positive, without the pre-alignment data it is hard to draw firm conclusions as
to the effect of alignment from the evaluations.

If we compare the pre- and post-alignment courses with respect to the SOLO
levels involved (those tested for on the exam and trained for during teaching
activities), we get an interesting picture. The two rightmost columns of Fig. 6
show the SOLO levels of the learning activities involved in the pre-alignment
and post-alignment courses, respectively; a dash “-” is given when the learning
objectives were not tested and trained for. Evidently, alignment has facilitated
a significant increase in the SOLO levels involved, in tune with Biggs’ definition
of “good teaching”. The pre-alignment courses predominantly involved lower-
level SOLO 2 and 3 activities with most of the level 4 activities completely
missing. The post-alignment courses, on the other hand, managed to explicitly
incorporate the intended higher-level-4 objectives (relate, analyze, compare, and
relate), while discouraging the low-level memorization activity.

In 2006, one of the students wrote the following in the anonymous course
evaluation which pretty much captures exactly what I was aiming (and hoping)
for:

Overall: “This course has been awesome! It took me a while to be able to think
in models, but I saw the light along the way.”
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Teaching: “Lectures have been great, the theoretical exercise classes have been
rewarding and the feedback has been immense and insightful”

Exercises: “I did not have a lot of time to do the exercises, but they seemed
relevant from week to week.”

Project: “The mini project was a good and solid exercise in analyzing a problem,
making a model and implementing it. A very good exercise!”

Finally, I believe we need to move away from considering the exam a “nec-
essary evil” to instead recognize and perceive it as a powerful pedagogical and
motivational instrument.
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A Project Specification

Here is the specification of the “Banana Republic” project, as given to the
students (Figs. 7,8):

Banana Republic:

Textual specification:

A one-way road passes by the presidential palace in the “Banana Republic”. In order
not to delay his excellency, El Presidente, and to make him avoid too close contact with the
population, a gate has been mounted (to the west) so that access to the road may be restricted
(by closing the gate). Underneath the gate is a car entry sensor which detects cars passing by
the gate when it is open. The road also has a car exit sensor (to the east) which detects when
cars exit the area in front of the palace. The garage door of the palace is equipped with a
sensor to detect when the presidential car is leaving the palace; an entry sensor detects when
it enters the main road, and a warning signal (on/off) indicates whether or not cars are on the
road (i.e., whether or not it is safe for the president to enter the road).

You may assume that N=4 cars drive on the main road and that they “reappear” to the
west when they drive away to the east (as in the old PacMan games). Cars may overtake each
other, even in the crossing area (which has a capacity of, say, M=3 cars). You may also assume
that his excellency, El Presidente, only leaves the palace and that his car reappears at the
palace when he has driven off (to the east).

Your job is to make sure (using a controller) that no other cars are on the road in the
area in front of the palace at the same time as El Presidente’s. The controller receives input
from the sensors and may control the gate (open/close) and warning indicator signal (on/off).

When El Presidente is nowhere in sight, the gate should be open so the cars may pass
into the restricted road without delay, however when El Presidente is coming, he should be
allowed to safely enter the road as soon as possible - even in congested rush-hour traffic.

(a) Specification.

CAR ENTRY SENSOR = GATE = OPEN,

(car enter -> CAR ENTRY SENSOR). OPEN = (close gate -> CLOSED

CAR EXIT SENSOR = |pass gate -> OPEN),

(car exit -> CAR EXIT SENSOR). CLOSED = (open gate -> OPEN).

l

(b) Processes given. (For details of the FSP modelling language, we refer to [10].)

Fig. 7. Project specification



18 C. Brabrand

Your task: [specification �→ (unsafe) model �→ (safe) model �→ (safe) implementation]:

(a) Construct a model of the (unsafe) BANANA REPUBLIC (i.e., without a controller).
(b) Test your model to see that collisions with El Presidente can occur (give trace).
(c) Define a safety property, NO CRASH, that can check that collisions with El Presidente can

occur.
(d) Verify that collisions with El Presidente can occur (using the above safety property).
(e) Now construct a controller and add it to the system to model a SAFE BANANA REPUBLIC (such

that collisions with El Presidente can no longer occur).
(f) Then verify formally that collisions with El Presidente can no longer occur (with the

controller constraining the behavior).
(g) Subsequently add a liveness property, LIVE PRESIDENTE, formally verifying that El Presi-

dente is always eventually permitted to enter the restricted road even in congested rush-
hour traffic.

(h) Finally, implement your (safe) model in Java as closely to your model as possible (and give
a UML diagram of its structure).

(a) Project task.

Document everything in a small written report which should (at least) include:

(1) Discussions of relevant problematic issues;
(2) Explanations of your solutions and motivations for your solutions;
(3) For step (a), give an explanation of the meaning of all actions in terms of all processes;
(4) For step (a) & (e), a discussion of the relationship between your model and the specification.
(5) For step (h), a discussion of the relationship between your model and your implementation.

The report should be self-contained in the sense that we should be able to understand your
solution and the motivations for your solution without having to look into the model or
implementation. This means that it should for instance include all necessary and relevant parts
of the model and implementation, underlining relevant discussions in the report.

Be concise and to the point (not necessarily “the more explanation the better”); in-
clude only issues relevant to the problem at hand (irrelevant issues may subtract points).
This is what wins you points (there are no points for an unmotivated solution “out of the blue”).

(b) Project report.

The grading is done relative to the course objectives; i.e., that you demonstrate the ability to:

– construct (unsafe and safe) models of the “Banana Republic” (from the specification);
– apply standard solutions to common concurrency problems in the “Banana Republic”;
– relate your (unsafe and safe) models of the “Banana Republic” to the specification;
– test your unsafe model and exhibit a collision trace (using the LTSA tool);
– define the NO CRASH and LIVE PRESIDENTE properties relevant for the “Banana Republic”;
– verify your (unsafe and safe) models wrt. the above properties (using the LTSA tool);
– implement your safe model in Java; and
– relate your implementation to your safe model.

(c) Project evaluation criteria.

Fig. 8. Project task, report, and grading
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Abstract. This paper describes a course on modelling and validation
of concurrent systems given by the authors at the Department of Com-
puter Science, University of Aarhus. The course uses Coloured Petri Nets
(CPNs) as the formal modelling language for concurrency, and exposes
students to the benefits and applications of modelling for designing and
reasoning about the behaviour of concurrent systems. After the course
the participants will have detailed knowledge of CPNs and practical ex-
perience with modelling and validation of concurrent systems. The course
emphasises the practical use of modelling and validation and has less fo-
cus on the formal foundation of CPNs. The course is based on a new
textbook on CPNs.

1 Introduction

To cope with the complexity of modern computing systems, it is crucial to be able
to debug and test the central parts of system designs prior to implementation.
One way to do this is to build a prototype. Another and often faster way is to
build a model. This allows the designer to inspect the model and investigate
the behaviour of the system prior to implementation. In this way many design
problems and errors can be discovered early in the system development phase.

The course Coloured Petri Nets — modelling and validation of concurrent
systems discussed in this paper focuses on Coloured Petri Nets (CPNs) [14–18].
CPN is a discrete-event modelling language combining Petri nets [22] and the
functional programming language CPN ML which is based on Standard ML [24].
The CPN modelling language is a general purpose graphical modelling language
used for communication protocols, data networks, distributed algorithms, work-
flow systems, embedded systems, and systems in general where concurrency and
communication are key characteristics. CPN allows system designers to build
models that can be executed and analysed by a computer tool. Simulation of
CPN models makes it possible to conduct a detailed investigation of the sys-
tem behaviour, and to reason about performance properties (such as delays and
throughput). State space analysis makes it possible to verify functional prop-
erties of the system (such as absence of deadlocks). The course introduces the
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participants to the CPN modelling language, its analysis methods, and support-
ing computer tools. It also includes presentation of industrial projects where
CPNs have been used for the modelling and validation of systems.

The course is divided into two parts, each lasting 7 weeks, and participants
may choose to follow only the first 7 weeks. Each part of the course corresponds
to five ECTS which means that the participants are required to use 1/3 of
their study-time on the course. The aim of the first part of the course is that
the participants will obtain detailed knowledge of CPNs and experience with
modelling and validation of small concurrent systems. The aim of the second
part is that the participants will have practical experience with the application
of CPNs and CPN Tools [10] for modelling and validation of larger concurrent
systems. The working methods of the second part will also train the participants
to plan and complete projects and to communicate professional issues.

The only prerequisite for the course is that the participants must have com-
pleted the first two short introductory programming courses of their bachelor
studies. These two programming courses correspond to ten ECTS. This means
that we assume that the participants are familiar with conventional program-
ming language concepts such as variables, types, procedures, and modules. The
overall approach taken in the course is to introduce the CPN modelling language
in a similar way as programming languages are introduced, i.e., through concrete
examples that illustrate the constructs in the modelling language and also the
more general concepts of concurrency, synchronisation, and communication. The
course is an optional advanced course, and the majority of the participants are
in their third to fifth year of studies when taking the course. The course usually
has 20 – 30 participants. It is important to emphasise that the course presented
in this paper is a specialised course on the CPN modelling language and sup-
porting computer tools. There are several other courses in the curriculum at our
computer science department aimed at giving a more general introduction to
the theoretical and practical aspects of concurrency. The theoretically oriented
courses include courses on automata, concurrency, and model checking that in-
troduce the students to labelled transition systems, CSP, CCS, and temporal
logic. The practically oriented courses include courses on network protocols and
internetworking, operating systems, and distributed systems.

In the following sections we present and discuss the intended learning outcomes
of the course (Sect. 2), the teaching and assessment methods used (Sect. 3), give
an example of a representative student project (Sect. 4), and present the new text-
book on CPNs on which the course is based (Sect. 5). Finally, we discuss experi-
ences and further development of the course (Sect. 6).

2 Intended Learning Outcomes

The formulation of the intended learning outcomes of the course is based upon
the Structure of the observed learning outcome (SOLO) taxonomy of Biggs [1]
which provides a tool and framework for specifying the learning outcomes of a
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course. The SOLO taxonomy has five levels (1–5) determining a hierarchy of
learning competences where level 5 is the highest level:

Level 1: Prestructural Is the very bottom level where no competences have
been obtained.

Level 2: Unistructural Characterised by verbs such as memorise, identify,
and recognise. These verbs represent a minimalistic, but sufficient
understanding of each topic viewed in isolation.

Level 3: Multistructural Characterised by verbs such as classify, describe,
and list. These verbs represents solid competences within each topic
and basic understanding of the boundaries for each topic.

Level 4: Relational Characterised by verbs such as apply, integrate, analyse,
and explain. These verbs represent competences for orchestrating
facts and theory, action, and purpose.

Level 5: Extended abstract Characterised by verbs such as theorise, hy-
pothesise, generalise, reflect, and generate. These verbs represent
competences at a level extending beyond what has been dealt with
in the actual teaching.

The SOLO taxonomy has been adopted by the Faculty of Science at University
of Aarhus as a general means for formulating learning outcomes and coincides
with the introduction of a new Danish assessment scale with seven grades and
an ECTS certification process currently being undertaken by the University of
Aarhus. The purpose of the new grading scale is to measure more explicitly
than earlier the extent to which course participants have achieved the intended
learning outcomes. Within our department, a variant of the SOLO taxonomy has
been developed with verbs specifically aimed at computer science competences.
When specifying the intended learning outcomes for the course below, we will
highlight (using bold and italics) the verbs that map into the five levels of SOLO
taxonomy. The SOLO level to which a given verb belongs is written in superscript
following the verb. For the first part of the course discussed in this paper six
intended learning outcomes (ILOs) given in Table 1 have been defined. These
intended learning objectives express what the participants are expected to be
able to do at the end of the course. In the following we discuss each of the
learning outcomes in more detail.

ILO1 is concerned with learning the constructs of the CPN modelling language
which includes net structure concepts and the CPN ML inscription language, and
the concepts related to hierarchical and timed CPN models. ILO1 also includes
concepts such as binding elements, steps, concurrency and conflict.

In ILO2, we require the participants to be able to formally define and explain
the syntax and semantics of CPNs. The purpose of ILO2 is for the participants to
understand that CPNs rely on a formal foundation, and presenting the formal
definitions means that participants explore CPNs from a different angle than
just the example driven introduction to the language. In that sense, the formal
definitions represent a complementary view of the modelling constructs that can
help the participants to further consolidate their understanding. ILO2 does not
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Table 1. Intended learning objectives–first part of the course

ILO1 explain4 the constructs and concepts in the CPN modelling language
ILO2 define2 and explain4 the syntax and semantics of CPNs
ILO3 define2 and explain4 properties for characterising the behaviour of con-

current systems
ILO4 explain4 the basic concepts and techniques underlying state space analysis

methods
ILO5 apply4 CPNs and CPN Tools for modelling and validation of smaller con-

current systems
ILO6 judge4 the practical application of CPNs for modelling and validation of

concurrent systems

require the participants to be able to formally define hierarchical CPN models
and timed CPN models. The formal definitions for this limited subset of the CPN
modelling language can be introduced using simple mathematical concepts.

In ILO3 we require the participants to be able to define and explain the
standard behavioural properties of CPNs (such as boundedness properties, dead
markings, and live transitions) and quantitative performance properties (such as
delay, throughput, and utilisation). These concepts are used when the students
work with the analysis methods of CPNs which include simulation, simulation-
based performance analysis, and state space analysis.

ILO4 relates to the state space analysis methods of CPNs. Here we require
the participants to be able to explain the concepts of state spaces and strongly
connected component graphs. Furthermore, we require the participants to be
able to explain how the standard behavioural properties of CPN models can be
checked from the state space and strongly connected component graphs.

ILO5 specifies that the participants must have operational knowledge of the
topics taught in the course, i.e., be able to apply the modelling language and
the analysis methods in practice.

The purpose of ILO6 is that participants must be able to determine whether
CPNs are an appropriate choice for modelling and validating a system within
some domain, i.e., determine whether CPNs are suited for modelling the system
considered given the properties to be validated.

For the second part of the course three intended learning outcomes given in
Table 2 have been defined. The purpose of ILO7 and ILO8 is for the participants
to be able to model and validate concurrent systems of a size and complexity that
appears in representative system development projects. The purpose of ILO9 is
that participants must be able to convey results and issues from modelling and
validation to colleagues.

We discuss the learning outcomes further in the next section when explain-
ing how the teaching methods have been chosen to support the participants in
achieving the intended learning outcomes, and how the assessment methods have
been chosen to measure whether the participants have achieved the intended
learning outcomes.



Teaching Modelling and Validation of Concurrent Systems 23

Table 2. Intended learning objectives–second part of the course

ILO7 construct3 and structure3 CPN models of larger concurrent systems
ILO8 apply4 analysis methods for CPNs for validation of larger concurrent

systems
ILO9 discuss5 the application of CPNs for modelling and validation of larger

concurrent systems

3 Teaching and Assessment Methods

The teaching and assessment methods used in the course have been chosen ac-
cording to the theory of constructive alignment [1]. In short, this theory states
that the intended learning outcomes should be the focus point of the course and
the teaching methods and activities used should be chosen so that they support
the participants in achieving the intended learning outcomes. Similarly, the as-
sessment methods used (e.g., the form of the exam) must be chosen so that they
measure the degree to which the participants have fulfilled the intended learn-
ing outcomes. The overall goal of constructive alignment is to encourage and
motivate students to take a deep approach to learning in contrast to a surface
approach. The surface approach is characterised by students doing the tasks with
a minimum of effort using low cognitive level activities, while a deep approach
to learning is characterised by students actively working with the topics using
higher cognitive level activities. This means that the focus of constructive align-
ment is the process and products that results from the learning activities of the
students. A fun and easy way to learn more about the SOLO taxonomy and the
difference between surface learning and deep learning is to watch the award win-
ning 19-min short-film Teaching teaching and understanding understanding [2]
which is available via the Internet. Another example of applying the theory of
constructive alignment in a course on concurrency can be found in [3].

As explained earlier, the course is divided into two parts. The first part of
the course has a duration of 7 weeks (a so-called quarter) and is organised into
14 sessions as detailed in Table 3. Each session lasts for 2 hours. It can be
seen that the course is a combination of lectures and workshops. In the three
workshops, the participants work in groups of two to three persons in front
of a PC using CPN Tools to solve exercises and projects. The lecturers are
present to help with technical questions and issues related to the projects and
exercises. In our experience, these workshops are very useful as it enables face-
to-face discussions with the participants and is effective in highlighting issues
that need to be discussed in more detail—and which can then be discussed on-
demand at the workshops. In this respect the workshops facilitate an interactive
teaching-learning environment. Furthermore, the intention of the workshops is
to support the intended learning outcomes of the course, in particular learning
objective ILO5, but the workshops also facilitate learning outcomes ILO1–ILO4
as it stimulates discussions among the participants of the concepts covered.
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Table 3. Sessions in the first part of the course

Session Topic Teaching Material
method

1 Why modelling and validation? Lecture Chapter 1 of [17]
2 Basic concepts Lecture Chapter 2 of [17]
3 CPN ML programming Lecture Chapter 3 of [17]
4 Modelling Workshop Small exercises
5 Formal definition of CPNs Lecture Chapter 4 of [17]
6 Modelling Workshop Project 1
7 Hierarchical CPNs Lecture Chapter 5 of [17]
8 State space analysis (1) Lecture Chapters 7 and 8 of [17]
9 State space analysis (2) Lecture Chapters 7 and 8 of [17]
10 State space analysis Workshop Project 2
11 Timed CPNs Lecture Chapter 10 of [17]
12 Performance analysis Lecture Chapter 12 of [17]
13 Industrial applications Lecture Selected chapters

from part II of [17]
14 Course evaluation Discussion

The lectures use a series of variants of the protocol system shown in Fig. 1 to
introduce the modelling and analysis concepts. Protocols are used because they
are easy to explain and understand, and because they involve concurrency, non-
determinism, communication, and synchronisation which are key characteristics
of concurrent systems. No preliminary knowledge of protocols is assumed. The
protocol consists of a sender transferring a number of data packets to a receiver.
Communication takes place over an unreliable network, i.e., packets may be lost
and overtaking is possible. The protocol uses sequence numbers, acknowledge-
ments, and retransmissions to ensure that the data packets are delivered once
and only once and in the correct order at the receiving end. The protocol uses
a stop-and-wait strategy, i.e., the same data packet is transmitted until a cor-
responding acknowledgement is received. A data packet consists of a sequence
number and the data payload to be transmitted. An acknowledgement consists
of a sequence number specifying the number of the next data packet expected
by the receiver. The protocol is simple and unsophisticated, but yet complex
enough to illustrate the CPN constructs.

There are two mandatory projects in the first part of the course: project 1
on modelling and project 2 on state space analysis. The projects are conducted
in groups and are to be documented in a short five to ten pages page writ-
ten report. The first project is concerned with extending the CPN model of
the stop-and-wait protocol (see Fig. 1) to model a sliding window protocol. The
model of the sliding window protocol must be validated using simulation. The
second project is concerned with conducting state space analysis of the model
developed in project 1 in order to verify the correctness of the protocol. It is
interesting that 50–75% of the groups usually discover errors in their design of
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Fig. 1. Basic version of protocol model used as a running example

the sliding window protocol from project 1—errors that were not discovered by
the simulation conducted as part of project 1. This means that the participants
experience first-hand the power of verification techniques such as state spaces.

Both projects must be approved in order to enrol for the exam. This ensures
that the participants have fulfilled learning objective ILO5 before taking the
exam. The exam is a 20-min oral exam and the participants have approximately
1 week for preparation of the exam. At the exam each examinee draws one of
five exam questions covering ILO1-4. ILO6 cannot be directly accessed with
the current form of the mandatory projects and oral exam. Hence, it is only
indirectly covered via lecture 13 on industrial applications of CPNs.

The second part of the course is organised in a different manner as the main
aim is to consider modelling and validation of larger concurrent systems. In this
part of the course, the participants conduct a larger modelling and validation
project. There is a large degree of freedom in defining the project which is to be
done in groups of two to three persons. There are no conventional lectures during
this part of the course, but there are two progress workshops where the groups
make a 25-min oral presentation of the current state of their project. In the first
progress workshop, the focus is mainly on modelling, and the groups discuss
their model with the lecturers and the other participants who provide feedback.
In the second progress workshop, the focus is mainly on the validation part of
the project. The project is typically based on a natural language description
of a larger concurrent system. In the next section we give an example of a
representative project conducted in the second part of the course. The following
is a partial list of systems that have served as a basis for the project over the
past three years:
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– Distributed file systems. This project was based upon Chap. 8 of [8].
– Dynamic host configuration protocol (DHCP). This project was based upon

the Request for Comments document [11] specifying DHCP.
– Data dissemination protocol. This project was based upon the paper [4].
– Dynamic MANET on-demand routing protocol (DYMO). This project was

based upon the Internet-Draft [6] specifying DYMO.
– Internet key exchange protocol (IKE).This project was based upon the Re-

quest for Comments document [19] specifying IKEv2.
– Mutual exclusion algorithms. This project was based upon selected algo-

rithms from the book [21].
– PathFinder scheduling mechanism. This project was based upon the descrip-

tion that can be found in the paper [13].
– WebPic communication protocol. This project was based upon the document

[9] describing the protocol.

The participants are free to choose the system to be used as a basis for the
project, but we also provide a set of five to ten project proposals. Many of the
projects have focused on communication protocols and distributed algorithms,
but it is possible to choose systems from other domains such as workflow systems,
manufacturing systems, and embedded systems.

The assessment of this part of the course is based on an evaluation of the
written report which is required to have a length of 15–20 pages, and an individ-
ual oral exam where each participant is required to make a presentation of the
group project. The final grade is the average of the grade for the written report
and the grade for the oral performance. The act of constructing a larger model
and validating it is what supports learning outcomes ILO7 and ILO8, whereas
the progress presentations support ILO9.

4 Example of a Student Project

As a representative example of a project conducted in the second part of the
course, we consider a project made by a student group on modelling and val-
idation of the DYMO [6] protocol. A mobile ad-hoc network (MANET) is an
infrastructure-less wireless network consisting of a set of mobile nodes, where
multi-hop communication is supported by the individual mobile nodes acting
as routers. DYMO is a routing protocol being developed by the IETF MANET
working group [20] and is specified in a 35-page Internet-draft giving a natural
language specification of the protocol.

Figure 2 shows the top-level module of the hierarchical CPN model con-
structed by the student group. The CPN model is divided into four main parts
represented by the four substitution transitions drawn as rectangles with double
lines. The Application Layer represents the applications that use the multi-hop
routes established by the DYMO Layer. The Network Layer models the trans-
mission of packets over the underlying mobile network, and the Topology part
models the mobility of the nodes which causes the topology of the MANET to
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Fig. 2. Top-level module of CPN model of the DYMO routing protocol

be dynamic. The submodules associated with the substitution transitions then
specify in detail the operation of the DYMO protocol and the environment in
which it operates.

The complete CPN model is a medium-sized model consisting of 9 modules,
18 transitions, 45 places, 17 colour sets, and 20 CPN ML functions. Fig. 3 gives
an example of one of the modules in the CPN model. It models the processing
of Route Reply (RREP) messages by the mobile nodes. Messages from the un-
derlying network arrives at the Message from network place (drawn as an ellipse)
at the lower right. The module captures the two possible cases when receiving
a RREP message. Either the RREP message has to be forwarded to the next
mobile node on the route being established, or the mobile node is the target for
the RREP. These two cases are modelled by the accordingly named transitions
(drawn as rectangles). If the RREP is to be forwarded it is put on the place
DYMO to network. If the mobile node is the target for the RREP, the message
is put on place ReceivedRREP for further processing.

The constructed CPN model captures a large subset of the DYMO protocol
specification. Through the organisation of the CPN model into a hierarchically
structured set of modules, the students demonstrated that they are able to take
a complex system (in this case the DYMO protocol) and construct a CPN model
at a good level of abstraction (cf. ILO7). Furthermore, they showed that they
can divide the CPN model into modules which naturally reflect the operation
of the protocol. In the process of constructing the CPN model, the students
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discovered several ambiguities and missing parts in the DYMO specification,
and they used state space analysis to investigate non-trivial issues related to
the operation of the DYMO protocol (cf. ILO8). The project was documented
in a 20-page written report that introduced the basic operation of the DYMO
protocol, presented the CPN model and the assumptions made in the modelling,
and discussed the simulation and state space analysis results obtained (cf. ILO9).
A revised version of the project report was later published in [12].

5 Course Material

The course is based on a new textbook [17] that is currently being written by the
authors of this paper. The book is organised into two parts. Part I introduces
the constructs of the CPN modelling language and presents the analysis meth-
ods. This part provides a comprehensive roadmap to the practical use of CPNs.
Part II presents a collection of case studies illustrating the practical use of CPN
modelling and validation for design, specification, simulation, and verification in
a variety of application domains. Most of the examples in Part II are taken from
industrial projects. The book is aimed at both university courses and self-study.
The book contains more than enough material for a one semester course at an un-
dergraduate or graduate level. A typical course will cover Part I on the basics of
CPNs and then select appropriate chapters in Part II depending on the aim of the
course. The following is a brief description of chapters contained in Part I of the
textbook:

Chapter 1: Introduction to modelling and validation. This chapter gives a mo-
tivation for modelling and validation of concurrent systems and explains how
they can be used in system development projects. It also discusses the ben-
efits and limitations of the techniques, and provides a very brief overview of
CPNs and CPN Tools.
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Chapter 2: Basic concepts. This chapter introduces the building blocks of the
CPN modelling language, including net structure (places, transitions, and
arcs), inscriptions (colour sets, initial marking, arc expressions, and guards),
and enabling and occurrence of binding elements and steps.

Chapter 3: CPN ML programming. This chapter presents the CPN ML
programming language for defining colour sets and functions, declaring vari-
ables, and writing inscriptions in CPN models. This chapter provides a com-
prehensive introductory road map to the CPN ML programming language.

Chapter 4: Formal definition of Coloured Petri Net. This chapter gives a for-
mal definition of the syntax and semantics of the CPN modelling language
as informally introduced in Chap. 2. The chapter formally defines multi-sets
and associated operations, the elements of a CPN model, and the enabling
and occurrence rules. It also introduces and explains the diamond rule speci-
fying that a step can be divided into substeps, and that executing all substeps
(in any order) results in the same marking as executing the original step.

Chapter 5: Hierarchical Coloured Petri Nets. This chapter shows how a CPN
model can be organised as a set of modules, which is similar to how pro-
grams are organised into modules. It introduces the concept of modules,
port and socket places, substitution transitions, and module instances. It
also introduces fusion places and fusion sets.

Chapter 6: Formal definition of hierarchical Coloured Petri Nets. This chapter
formally defines the syntax and semantics of hierarchical CPN models as
informally introduced in Chap. 5.

Chapter 7: State space analysis and behavioural properties. This chapter intro-
duces the basic state space method of CPNs and shows how it can be used
to investigate the behavioural properties. The chapter introduces the con-
cepts of state spaces, strongly connected component graphs, and reachability,
boundedness, home, liveness, and fairness properties.

Chapter 8: Advanced state space methods. This section gives a brief survey
of and introduction to a number of state space methods applicable in the
context of CPNs for alleviating the state explosion problem.

Chapter 9 Formal definition of state space analysis and behavioural proper-
ties. This chapter formally defines state spaces and behavioural properties
informally introduced in Chap. 7.

Chapter 10: Timed Coloured Petri Nets. This chapter shows how timing infor-
mation can be added to CPN models. This makes it possible to evaluate how
efficiently a system performs its operations, as well as model and validate
real-time systems, where the correctness of the system relies on the proper
timing of the events. The chapter introduces the concepts of time inscrip-
tions, time stamps, global clock, and the enabling and occurrence rules for
timed CPN models.

Chapter 11: Formal definition of timed Coloured Petri Nets. This chapter for-
mally defines timed CPN models as informally introduced in Chap. 10.
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Chapter 12: Simulation-based performance analysis. This chapter shows how
the performance of systems can be investigated using simulation. It introduces
performance measures, data collection, simulation replications, and statistical
processing of the collected data.

Chapter 13: Behavioural Visualisation. This chapter discusses the use of visu-
alisation that allows for the presentation of design ideas and analysis results
using concepts from the application domain. This is particularly important
in discussions with people and colleagues unfamiliar with CPN models.

The book is primarily aimed at readers interested in the practical use of CPNs.
This is reflected in the presentation of the material. All concepts and constructs
are informally introduced through examples followed by the formal definition of
the concept. We have decided to include the formal definitions of the CPN mod-
elling language and analysis methods for the following reasons. Firstly, including
the formal definitions resolves any ambiguity that may be left in the informal
explanations. Secondly, it means that the book can be used by readers interested
in studying the underlying theory of CPNs. The material is, however, organised
such that the practically-oriented reader can skip the chapters containing the
formal definitions. This underpins the important property that CPNs can be
taught and learned without studying the associated formal definitions.

The book can be seen as an update of the three-volume book Coloured Petri
Nets. Basic concepts, analysis methods, and practical use authored by Kurt
Jensen in 1992-1997 [14–16]. The CPN language and analysis methods described
in the new book are very close to those presented in the earlier three-volume
book. The new book gains from the experience on teaching [7, 23] and using
CPNs over the last 10 years—by the research group of the authors and by the
more than 5,000 people who have licences for CPN Tools.

6 Experiences and Outlook

The course and the textbook have been developed over the last three years where
the course discussed in this paper has been given four times (2005, 2006, 2007,
and 2008). Throughout this period we have gradually refined and revised the
course material and textbook based upon the feedback received from the course
participants and our own experiences.

At the end of both parts of the course we use approximately 30-min together
with the participants on evaluating and discussing the course in an informal way.
This informal evaluation is supplemented by a more formal on-line evaluation of
the course organised by the Faculty of Science. Table 4 provides a summary of
the evaluation for the version of the course that was given in the spring of 2007.
Altogether there were eight participants that filled out the on-line evaluation
form and each “*” in a table entry represents the feedback of one participant.
This means that a single participant represents 12, 5% of the replies and the eval-
uation results should therefore be interpreted with some care. Still, the feedback
provides a useful indication of the participants’ view on the course.
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Table 4. Summary of on-line participant evaluation–spring 2007

To a very To a large To some To a lesser Not at
large extent extent extent extend all

Were course * *******
goals achieved
Did content ** ***** *
match description
Was the course * ***** **
interesting
Was the course *** **** *
difficult

<4 5–8 9–12 13–16 17–20
Hours used *** *****

Very good Good Either way Bad Very bad
Learning outcome * ****** *
Lectures * ***** **
Workshops * *** ****
Textbook * ****** *
Overall evaluation * *******

The evaluations that we have received are in general very positive. In terms
of achieving the course goals, content, and level of interest the participants are
positive. It is also interesting to observe that the participants do not find the
course to be particularly difficult. Participants are also positive with respect to
learning outcomes, lectures, workshops, and the textbook. The participants are
expected to use about 1/3 of their study time on the course which is approxi-
mately 45h, but the feedback shows that they use slightly less. This is probably
related to the participants not finding the course difficult which in turn may be
related to the workshops, where the participants can work on their project under
our supervision and issues that may arise can thereby be resolved quickly. The
overall evaluation of the course is also positive.

A main difference compared to [14–16] and how we have taught CPNs earlier,
has been to add more material on the CPN ML programming language. Mas-
tering the CPN ML programming language is important in order to apply the
CPN modelling language successfully for modelling and validation of concurrent
systems. Experience has shown that this is a non-trivial task. The main reason
is that CPN ML (which is based on Standard ML) is a functional program-
ming language and therefore has a different conceptual basis than traditional
languages such as C, Java, and C++ that the participants are familiar with.

Our teaching activities rely heavily on the integrated use of CPN Tools. This
choice is deliberate as it is, in our view, a verymotivating factor for the participants
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and it encourages the participants to work actively with the topics. We have also
made the deliberate choice of introducing CPNs directly without first introducing
ordinary Petri nets (e.g., place/transitions nets). The main benefit of this is that it
immediately enables us to use realistic model examples from the beginning of the
course without having to model data manipulation in an unnatural way using net
structure. This is possible because the data manipulation can be modelled using
very simple CPN ML inscriptions. Demonstrating that realistic examples can be
modelled using relatively simple constructs is also a factor which contributes to the
motivation of the participants.

A key characteristic of CPNs is that the language has few but powerful mod-
elling constructs. This is an advantage from a teaching perspective since there
are relatively few concepts that have to be introduced and mastered. It is also
to some extent a disadvantage in practical modelling since certain parts of sys-
tems cannot be modelled in a straightforward way. A further development of the
CPN modelling language and CPN Tools to include constructs such as queueing
places, capacities, and module parametrisation is therefore of interest also from
a teaching perspective and would improve the modelling convenience.

The first part of the course relies heavily on the protocol model used as a
running example. In the second part of the course, we have observed that it
takes some effort from the participants to get started on their own modelling
project which is concerned with a different system and sometimes within a dif-
ferent application domain. We plan to improve on this in the next version of
the course by integrating more of the examples from part II of the textbook in
the first part of the course. Similarly, we plan to have some lectures also in the
second part of the course devoted to presenting some larger examples of CPN
models. Altogether, this would give the participants a broader perspective on
CPN modelling which will be useful when the participants are actively working
on their larger project, and hence are facing the challenges of modelling a larger
system. This would also further contribute to the learning goals concerned with
being able to judge the practical application of CPNs. Finally, we also consider
adding a third project on performance analysis in the first part of the course.

We have recently adapted the theory of constructive alignment and the SOLO
taxonomy of [1] at our department for describing course aims and learning out-
comes. This has not prompted major changes to the way that the course is
being taught, but it has been very helpful in making the learning outcomes of
the course much more explicit than earlier. The SOLO taxonomy and construc-
tive alignment provides in our opinion, a very good and practically applicable
framework for reflecting upon teaching and assessment methods used in a course.

We expect the new textbook to be completed by 2008. Slide sets, CPN models,
and suggestions for exercises and projects are available from the course web
pages [5]. All of the material is in English. These web pages will eventually
evolve into a set of web pages accompanying the textbook. Teachers interested
in evaluating and/or using our course material are most welcome to contact us
and obtain a draft of the textbook.
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Abstract. Concurrency phenomena are omnipresent in everyday com-
puter practice and their understanding must therefore become a prime
focus of contemporary academic education in computer science. This
paper devises a concept suitable for teaching concurrency theory to first
year Bachelor students in computer science. It is based on Robin Milner’s
Calculus of Communicating Systems, which is smoothly integrated in an
introductory functional programming course. We report on a concrete
instantiation of this concept in an introductory course held at Saarland
University in winter 2005/2006.

1 Introduction

Concurrent computing is pervading the world and one cannot underestimate its
importance in the future. With the arrival of multicore processor desktop systems
concurrency needs to be thoroughly understood by every computer scientist
in order to use present systems skillfully. This is evident for instance in the
Java way of dealing with shared memory [12]. Also other disciplines like bio-
informatics have started to use ideas from concurrency theory to model enzyme
reactions via stochastic process calculi [8,28]. So concurrency theory will be far
more widespread in the future then it already is nowadays.

The important role concurrency plays is reflected in the curricula at Saarland
University. In our mainly research-oriented Master’s and the Bachelor’s programs
in computer science and bio-informatics, there are a number of courses in which
concurrency phenomena arise naturally, and their proper understanding is prac-
tically relevant. Examples include principle courses on “Data networks”, “Oper-
ating Systems, “Verification”, and “Database systems”. All of these courses are
not only found at Saarland University, but are present in the core curriculum of
computer science in almost every university in similar form. However, teaching
the theoretical basis of concurrency is usually only done — if at all — at a late
point in the curriculum. Since concurrency is notoriously difficult to understand,
it is kept implicitly in most courses or only dealt with intuitively and not put on
a formal basis. This leads to a fractal and shallow understanding of concurrency
and students may not be aware of the principal difficulties that come with it. Fur-
thermore, the trend towards multicore system architectures and multithreaded
program design is promoted by the soft- and hardware industry. Yet only the
benefits of concurrency are exhibited alluringly, neglecting new causes of error

K. Jensen, W. van der Aalst, and J. Billington (Eds.): ToPNoC I, LNCS 5100, pp. 35–53, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



36 C. Eisentraut and H. Hermanns

that are very hard to detect — such as deadlocks caused by badly scheduled re-
source competitions. Universities owe the education of computer scientists that
are capable of dealing with the challenges of today and tomorrow! And concur-
rency definitively is one of them. Our starting point therefore has been to start
teaching the foundations of concurrency as early as possible in our curricula.

In this paper, we report on an elaborated approach to put concurrency theory
right in the first year of the Bachelor curriculum. At Saarland University, the
very first course for starting computer science Bachelor students is called Pro-
gramming 1. Despite its title, the concept of this course does not aim at teaching
practical usage of programming languages like Java or C, but rather focuses on
the theoretical foundations needed to understand the principles of computer
programming. The course provides students with basic knowledge in important
mathematical and algorithmic concepts needed for their further studies such as
set theory, discrete mathematics, algorithms and complexity, correctness proofs
for programs, formal syntax and semantics of programming languages. There-
fore, the course uses Standard-ML (SML) [21], a powerful functional program-
ming language, as a vehicle to introduce the above concepts in the form of
“executable mathematics” in a practical environment. The original course has
been designed by Smolka [24], and is one of the highest ranked courses according
to student feedback.

As it is common to almost all introductory computer science courses, also
this course has so far entirely ignored concurrency and instead only focused on
aspects of sequential computing. In the sequel, we present how we modified this
course to introduce freshmen to concurrency theory, while keeping the flavour
of the course of being “executable mathematics”. This was put into practise in
the course Programming 1 held in winter 2005/2006.

In a nutshell, we introduce a simplified version of Robin Milner’s Calculus of
Communicating Systems (CCS) [1,20] together with its underlying operational
semantics. The latter is presented as an executable mapping on variations of
graphs — after these have been introduced. We make the students implement
parts of the semantics in SML, and let them then explore simple CCS examples
of mutual exclusion or readers–writers problems. To round off the theoretical
concepts, different notions of process equivalences (trace and bisimulation equiv-
alence) are discussed, together with practical aspects sharpening the students
awareness of concepts like deadlock-sensitivity and resource contentions in the
presence of composition.

To the best of our knowledge this is the first attempt to teach concurrency
theory as part of a computer science introductory course, aiming at the stu-
dents’ understanding of a formal model of concurrency, non-determinism and
the general problems arising in concurrent computing. Other work so far has
concentrated on teaching programming of parallel algorithms [2,5,10,15] or they
described complete courses to teach a broad spectrum of concurrency topics,
that we consider beyond the scope of first year studies [3,4,19].

This paper is organised as follows. In Section 2 we explain the context in
which our teaching efforts are embedded. Section 3 gives a detailed account of the
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contents we taught to the students in class. Section 4 describes how the devel-
oped theory was integrated with practical experiments and programming work.
Section 5 reflects on the experiences we gained when teaching, and reports about
feedback received from students and colleagues.

2 Context

This section develops the background necessary to understand the way we intro-
duced concurrency. It first provides a short overview of the curricular contents
in the first semester of the Bachelor’s of Science in computer science at Saar-
land University, and then details the original setup of the introductory course
we started from. Almost all courses are worth 9 ETCS credit points which cor-
responds1 to about 270 working hours of the average student. Typically, such
a course comprises 4h of lecture and 2h of tutorials per week. The academic
year at Saarland University is split into two terms: a winter term followed by a
summer term. Each of them comprises a lecture period of 13–14 weeks.

Curricular context. There are no entrance level requirements for the Bachelor
programme in computer science at Saarland University, apart from a general
university-entrance diploma (German “Abitur” or equivalent). First year stu-
dents are supposed to have basic knowledge in calculus and linear algebra upon
entering the university, but skills in other fields of mathematics or computer
science are not demanded or expected. However, the department offers a dedi-
cated preparatory course to bridge from mathematics taught in high school to
mathematics relevant for computer science.

The mandatory introductory course in the computer science Bachelor curricu-
lum at Saarland University is Programming 1. This course coins the students’
perception of computer science and prepares their way through the further course
of study. The mathematical basics needed for computer science are introduced
in three consecutive courses Mathematics 1–3 held in the first three teaching
terms.

Introductory course. Computer science students at Saarland University usually
get in touch with computer science in the course “Programming 1” for the first
time. In the following, we give an overview of the contents of this course. In
“Programming 1” formal aspects of computer programming are taught using the
functional programming language SML as a vehicle for the practical assimilation
of the theoretically acquired matters. Originally, the course had the following
structure.

– The first part of the course focuses on an introduction to important data
structures like lists, trees and graphs and some important algorithms (list and
tree traversal, sorting, . . . ). This is accompanied by practical experiments
with their concrete realisations in SML.

1 Each 30h of student work of the average student is worth one ETCS credit point.
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– The second part of the course teaches a mathematically rigorous approach
to basic considerations of program verification and (run-time) analysis of
programs, based on axiomatic set theory. Program correctness is presented
as an integral part of program design, and mainly obtained by induction over
well-founded sets combined with termination proofs.

– The third part of the course is dedicated to formal syntax and semantics of
programming languages. First, the differences between abstract and concrete
syntax of a language are developed. Then, the course focuses on type checking
and semantics of programming languages. For illustration, a simple subset
of SML is formally specified and serves as a working base. Students are
guided through the development of an interpreter for it, which includes lexing
and parsing, type checking, semantics together with the appropriate data
structures, all realised in SML.

– The last part of the course is devoted to the realisation of a virtual machine
in SML as well as a compiler from a high-level imperative language to the
virtual machine’s assembler code. The virtual machine and the assembler are
again simple, but allow for most elementary features: arithmetic operations,
jumps, dynamic heap memory allocation, (recursive) procedure definitions
and calls.

The course is one of the highest ranked courses according to the feedback of the
students. It is generally considered a challenging but worthwhile and inspiring
endeavour. The success ratio among first year students is in the order of 50–70%.
Remarkably, it is lower for students who need to retake the course, which might
likely be a consequence of the absence of entrance-requirements with respect to
mathematic skills. Data collected from questionnaires suggest, passing the course
“Programming 1” is strongly related to participation in the optional preparatory
course on mathematics, but not related to previous programming experiences of
the students outside the university.

3 Course Contents

When we decided to teach the introductory course in computer science in 2005,
we considered concurrency theory to be underrepresented in the basic curricu-
lum, despite its increasing impact on the theoretical and practical work of future
computer scientists. This was confirmed in discussions inside the faculty, where
colleagues from databases, computer graphics, and computer architecture all en-
couraged us to tackle this problem. We thus decided to extend or modify the
freshmen education by a substantial introduction to concurrency theory.

3.1 Pedagogical Considerations

Teaching concurrency to freshmen is not straightforward and we needed to make
the following considerations:

– Which aspects of concurrency theory are of maximal benefit to the students
for the subsequent courses?
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– How can we use general concepts already taught during the preceding parts
of the course effectively in order to build up a theory of concurrency?

– Do we need to sacrifice other parts of the course we are focusing on?
– Do we manage to keep the overall flavour of the course?

Given that the introductory course “Programming 1” initiates the students to
the world of computer science by advocating the concept of “executable mathe-
matics”, we were determined to keep this flavour in our approach. At the same
time, the foundational education is at this point not very deep. The students
learn about graphs and relations, but have no deep understanding of them yet,
and are struggling with the difference between the syntax of an (SML-)program
and its semantics.

After some deliberation, we felt that introducing a basic process calculus as
a language mapping on graphs might be a good — and executable — approach.
Based on this idea, the other ideas then followed. We decided to incrementally
introduce a process calculus of communicating systems. If well - prepared, the
students were deemed to be able to implement parts of the semantic mapping
themselves in SML. This would enable them to explore classical concurrency
examples, such as the dining philosophers problem in their own implementation.

These considerations led us to choosing Robin Milner’s CCS [20] with its
underlying semantic notion of labelled transition systems (LTS) as a model of
concurrency. Labelled transitions systems are a foundational model in computer
science, also outside the core world of concurrency. As a pragmatic side effect,
since both SML and CCS are originating in Robin Milner’s work, the students
had few problems to believe that both fit together well.

When we then further shaped the contents we felt that we can only successfully
teach this material towards the end of the course, when the first three quarters
of the original course material have been covered. We finally decided to branch
off the original course setup in the middle of the third part, right after lexer and
parser were discussed. This decision lead to the following revision.

Course modification. Instead of studying type checking and semantics and their
implementation for a subset of SML as an example programming language, we
take fragments of CCS in a step-by-step fashion, always linking to lexing, parsing
and semantics. The fourth part, where originally a virtual machine for a simple
imperative programming language was to be developed, is in principle kept by
us, but in a radically simplified form, in the sense that now the virtual machine
is just a CCS interpreter.

All in all, this strategy allowed us to keep most of the original course contents
in place, except for (1) diving deeply in aspects of type checking and semantics
in the presence of recursive functions and (2) exposing the students to simple
imperative programming. At the same time, we managed to teach theoretically
important concepts, such as concurrency, non-determinism, interaction, opera-
tional semantics, trace and bisimulation equivalence, and compositionality.

At the point where we branch off from the original course contents, the stu-
dents are already familiar with the following mathematical and programming
principles, most of which will be used in the continuation of our course: basic
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axiomatic set theory introducing Boolean algebra, relations, functions, recur-
sion, and inductive proofs; principal concepts of programming languages includ-
ing grammars, type checking, semantics, inference rule and trees; properties of
programs including termination and correctness, semantical equivalences of pro-
grams, time complexity; basic data structures such as lists, trees, graphs and
their representation in SML; principles of recursive algorithms such as list and
tree traversals, sorting, divide-and-conquer; SML basics and some advanced fea-
tures (such as polymorphism). We proceed in three steps when introducing the
notations to our students.

– In a first step, we familiarise the students with the model of labelled transi-
tion systems (LTS), as a mild extension of directed graphs.

– We then introduce a language (a subset of CCS) used to describe these
models, illustrating LTS as the genuine interpretation (i.e., semantics). We
call elements of this language processes.

– In a third step, we teach concurrency via the composition of processes inter-
acting on complementary signals, yielding full CCS.

We think that proceeding this way appears very natural to the students, as soon
as they are familiarised with the fact that processes (in their view: computer
programs) can be described by states and the accomplishable transitions between
states.

3.2 Graphs as a Model for Concurrency

We embark on our endeavour of teaching concurrency to freshmen by introduc-
ing labelled transition systems, in the following called labelled graphs, as a way
to model the communicative aspects of programs, which abstracts away from
other (internal) computations. However, the introduction at this point in the
course is only very intuitive and not detailed and serves merely as a motivation.
Experience has shown, that students without a decent background in concur-
rency theory are generally not aware of the fact, that many everyday systems,
like mobile phones, vending machines, etc. are indeed communicating systems.
Moreover, they are mostly completely unaware of the enormous complexity that
communication adds to systems and that their analysis demands special meth-
ods. However, after this affirmative motivation we focus on the notion of a la-
belled graph as a minor extension to directed graphs, which have already been
introduced in the course. We use the following definition:

Definition 1. A (directed) labelled graph G is a triple (V, M, E) with V an
arbitrary set of vertices, M an arbitrary set of labels, and E ⊆ V ×M ×V a set
of directed labelled edges.

We only use labelled graphs where V is countable and M is finite. Now a process
is easily defined as a graph together with an initial vertex, intuitively denoting
the initial state of the process, which is in turn represented by the graph.

Definition 2. A process is a pair (G, v) where G = (V, M, E) is a graph and
v ∈ V is vertex of G representing the initial vertex.
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We avoid at this point to emphasise the meaning of labelled graphs as a model
of concurrency, instead treat it more as an academic object. The students are
already familiar with graphs and can reuse acquired knowledge. We only provide
hints that a process might be an abstract view on what a computer program does.
Giving this motivation allows the students to see that the previously introduced
rather abstract concept of graphs has concrete applications in computer science.

3.3 Graph Languages

We now introduce our language CCS in three steps: (1) L0, a language for
acyclic processes; (2) L, a language for processes; (3) CCS, a language for com-
municating processes.

The semantics of L0 maps terms to directed labelled graphs over label set
M without cycles. The reason why L0 does not allow for cycles is that cycles
correspond to recursive process definitions and recursion is generally hard to un-
derstand, especially for beginners. Therefore at first we leave it out, and discuss
some language properties and examples, before including recursive expressions
(in L), and then communication, concurrency and interaction (in CCS).

Our presentation of the syntax of L0 is at the same time used to introduce
the notion of abstract grammar. The abstract grammar of L0 is

P ∈ L0 = 0 | a.P | P + P

where a ∈ M . In terms of processes, 0 intuitively denotes a processes, that can-
not perform any action. a.P denotes a process that can perform the action a and
then behaves like P . The term P +Q denotes a process that non-deterministically
behaves either like P or Q. The formal semantic definition we used is as follows: Let

GL0 = {(L0, M, E) | E ⊆ L0 ×M × L0}

be the set of all graphs over M with vertex set L0. The function

� � ∈ L0 → GL0 × L0 where � P � = ((L0, M,→), P )

defines the semantics of L0 by associating each process term with a state in
the transition graph. More formally, the semantics function maps every process
term P to a labelled graph, consisting of states L0, a set of labels M , and the
transition relation→ ⊆ L0×M×L0, together with an distinguished initial state,
which is P itself.→ is given by the smallest relation satisfying the inference rules
below in SOS-style (cf. [23]). A rule premise

conclusion is to be read as: conclusion holds
whenever premise holds. We abbreviate (P, a, P ′) ∈→ by P

a→ P ′ for arbitrary
L0-terms P and P ′ and a ∈M .

prefix
a.P

a→ P
choice l

P
a→ P ′

P + Q
a→ P ′ choice r

Q
a→ Q′

P + Q
a→ Q′

At this point we exploit the fact that the students have already seen a small sta-
tic type system defined using inference rules. Therefore, they are used to building
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proof trees and are able to deduce, for instance the graphical representation of
the process denoted by (a.0 + 0) + b.(0 + 0) as displayed below.

(a.0 + 0) + b.(0 + 0)

0 0 + 0a b

The only apparent difficulties for the students are (1) to accept that the vertices
of the graph are expressions of the language, and (2) what it means that the
relation defined by these rules is the smallest such relation.

In a next step we enhance the expressiveness of our language to allow for cyclic
graphs, which correspond to recursive processes. The language L has means to
deal with recursion via process variables. Processes are specified by a set Γ of
defining equations and an initial process term as before. In Γ all equations have
the form X = E where X is a process variable and E is an arbitrary term of
the language that may contain arbitrary variables. The terms of L are built
according to the following abstract grammar:

P ∈ L = 0 | a.P | P + P | X

The semantics of L is obtain from the semantics of L0 by adding one additional
rule that deals with recursion:

rec
Γ (X) = P P

a→ P ′

X
a→ P ′

Note that the semantics of a term is now dependent on the environment Γ .
Usually, Milner’s CCS expresses recursion via the rec-operator. For example
recX.E corresponds to the process (X = E, X) in our setting.

To use the rec-operator is mathematically more elegant (since several equa-
tions can be encoded in a single term), but looks frightening to beginners. We
decided not to use this operator in our language, since the use of defining equa-
tions is easier to understand, especially since the students are already familiar
with defining equations from various other fields of mathematics, and also from
defining functions in SML.

The languages L0 and L are our way of presenting the fragment of CCS that
allows for the description of non-deterministic finite state sequential processes.
They cannot yet express actual communication or interaction via parallel
composition.

3.4 Interacting Processes: CCS

This part of the course introduces many important ideas and notions of concur-
rency theory and can be considered the core of our introduction to concurrency.
For the first time, the students will see how concurrency, communication and
interaction of processes are dealt with in a formal mathematical framework.
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Therefore special care has to be put on this part of the course in order to
communicate these principles of concurrency theory to the students effectively.
For further reading, two textbooks [1,20] are recommended to the students.
The preceding part of the course has already introduced a subset of CCS that
allows for important aspects of concurrent processes like action prefix and
non-deterministic choice via the languages L0 and L. Therefore the students are
already familiar with the syntax of processes and can rely on labelled graphs as
a valid intuition for the interaction structure of processes, which in turn allows
us to communicate ideas in a way that is based on a firm formal basis, but is
still intuitive and motivating. As a running example we use a simple “cruise
control system” drawing some inspiration from [18]. In the following, we present
(a translation of) the example as used in our course notes [14], where actions
appear as pairs of sending (’!’) and receiving (’?’) activities.

A Cruise Control System. To explain the main ideas of concurrency and interac-
tion, we shall study a cruise control system, as it is found in many contemporary
cars. We will first concentrate on the central component of the system, the
controller . In the following, we give an informal — and strongly simplified —
description of its behaviour.

– In state IDLE the controller waits for activation (on?).
– Successful activation is acknowledged by the controller via ok! (and the target

speed is set to the current speed).
– By using the brake (brake?) the cruise controller gets deactivated temporarily.

The controller changes its state to SUSPEND.
– While in state SUSPEND it is possible to resume (with target speed set to

the value before suspending). This is being acknowledged by an ok! from the
controller .

– Switching off the controller is possible at any time and leads to state IDLE.

We can describe the intended behaviour of the controller by the following defining
equations (where we ignore the target speed settings):

IDLE = on?.ON + off?.IDLE

ON = ok!.(off?.IDLE + brake?.SUSPEND)

SUSPEND = resume?.ON + off?.IDLE

The semantics of L (CCS is yet to be introduced) gives us the process depicted
below, where we abbreviated one state by “. . .”.

IDLE

SUSPEND

ON

. . .

off?
on?

off?

ok!off?

brake?
resume?



44 C. Eisentraut and H. Hermanns

So far, this example is not more than a repetition of the syntax and semantics of
L, but the actions considered have more structure: they are post-fixed with “!”
or“?”, representing the distinction into complementary actions typical of CCS.
We motivate them as follows to the students.

In the above example we have made a natural distinction between these actions
that have been initiated directly by the controller (marked by “!”) and those that
represent reactions to interactions with the environment (marked by “?”). We will
call the former output-actions and the latter input-actions of the process.

The controller interacts with the environment. In our example, the environment
consists of a switch in the dash board of the car. The process BUTTON interacts
with the controller in a simple way: BUTTON activates (on!) and deactivates
(off !) the cruise controller from time to time. We describe this behaviour with the
following equation:

BUTTON = on!.off!.BUTTON

BUTTON off!.BUTTON

on!

off!

In addition, there is an acoustic beep! -signal, which signals the reception of ok?.

SOUND = ok?.beep!.SOUND

SOUND beep!.SOUND

ok?

beep!

For the moment we will only consider these three processes in our example. In
order to understand how the actions of the processes SOUND, BUTTON , and
CONTROLLER are related, we use the following illustration [18]:

SOUNDBUTTON CONTROLLER
!

!
!

?

?
?

? ? !
resume brake beep

off

on
ok

This schematic view on the interactions only serves the purpose of illustration: We
can see that the actions of the process BUTTON are complementary to those of
CONTROLLER; the output-actions of the former correspond to the input-actions
of the latter and vice versa. The same holds for process SOUND. Three actions have
no corresponding actions: the output-action beep! and the input-actions resume?
and brake?.
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Once this pictorial representation is fully understood, we take the students on a
quest for operators that allow us to express the pictorially represented correlation
in a language, and then to equip the language operators with a semantics.

Looking at this example, we observe the following principal phenomena:

Concurrency: Let us first consider the processes SOUND and BUTTON and
assume that CONTROLLER is not present. There is no interdependence between
the two processes and we may assume that each one can perform its actions
independently from the other process and thereby changing its states. This is
called concurrency.

Synchronisation: Also the processes CONTROLLER and SOUND are indepen-
dent to a large extent. The only exception is the input/output action ok. This
action can be performed by both processes at the same instant thereby performing
a simultaneous change of state. This is called synchronisation of processes.

A synchronisation of processes can take place when pairs of complementary input
and output actions occur.

We end this exemplary discussion with the following observation: Hitherto we
only considered single processes (in form of labelled and rooted graphs) and
developed a corresponding language. Now it is time to develop a language for
communicating and concurrent processes and provide it with semantics.

After this introduction we postulate the following principles of concurrency
which have been extensively motivated in the preceding example:

– Real-life processes have states. They can change states via certain actions.
– Actions are atomic, and their purpose is inter-process communication.
– Distinct processes can exist concurrently and perform actions.
– Inter-process communication can be performed whenever pairs of complemen-

tary input and output actions occur at the same time. This yields process
synchronisation, i.e., a simultaneous change of states.

Using this motivation as a background, we add a small intermezzo on the differ-
ent ways how inter-process communication might be formally captured (binary vs.
multiway, directed vs. undirected, buffered vs. handshake), with a particular focus
on Hoare’s CSP. For further studies on CSP the students are referred to [16]. We
stay on a very informal level in this intermezzo, before we return to the above exam-
ple, which makes a clear case for binary, handshake, directed communication. We
can thus easily motivate the formal semantic rules for the parallel composition op-
erator | of CCS as given below. Only the usage of the distinguished internal action
τ in the synchronisation rule needs further motivation in the course.

par l
P

m→ P ′

P | Q m→ P ′ | Q
par r

P
m→ P ′

Q | P m→ Q | P ′ sync
P

α→ P ′ Q
α→ Q′

P | Q τ→ P ′ | Q′
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The following example captures the essence of communication in CCS. The
two parallel processes a!.0 and a?.0 can either synchronise on a both reaching a
terminal state, or they can perform their respective actions independently and
in sequence, eventually reaching the same state.

a!.0 | a?.0

0 | a?.0

a!.0 | 0

0 | 0

a!

a?

a?

a!

τ

Completing our tour through CCS, we finally introduce the students to the
standard rules for the restriction operator \H , used to enforce synchronisation
between actions in H .

This part of the course has introduced concurrent processes, synchronisation,
etc., and the process algebra CCS (relabelling is moved as an exercise to the
students). As already mentioned above, we only deviate from Milner’s original
CCS in the way we represent recursion.2

3.5 Semantic Equivalence

The question when two processes should be considered semantically equivalent is
one of the most interesting ones in concurrency theory, but also one with many
diverse answers, discriminating various desired or undesired properties of con-
current processes, such as deadlock, divergence, branching structure, etc. [25,26].

An introductory course to computer science is surelynot the rightplace for an ex-
haustivediscussionof this topic.However,we felt theneedto shedsome lightonthis,
by reviewing graph isomorphism, trace equivalence, and bisimulation equivalence.

The topic of equivalence appears at various points in our course, always under
the slogan: “When should two processes be considered equivalent?” We initially
motivate this question by pointing out that in classical algebra, two arithmetic
expression in one variable may syntactically look rather different, still semanti-
cally describing the same polynome.

After accepting trace equivalence as the weakest common criterion for any
reasonable notion of equivalence,3 the students learn that the process’ branching
structure must be preserved (isomorphism or bisimulation) by a reasonable equiv-
alence notion, so as to avoid deadlocks in the context of parallel composition,
and they learn that it should be a congruence for the operators of the language
(trace equivalence or bisimulation). In summary, the students understand that
for CCS bisimulation equivalence is the central notion of equivalence.
2 Both representations are equally expressive, since for every expression P in our

representation of CCS there is an expression Q in Milner’s original representation,
such that the reachable subsets of the graphs � P � and � Q � are isomorphic, and
vice versa.

3 Trace equivalence also serves as an appetiser for language equivalence from automata
theory which is only taught in the second year.
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CCS> Environment: | 8.) --tau--> ((X | O) | Z)
X=a!.Z, | 9.) --tau--> ((X | Z) | O)
Y=((a?.Z + a!.O) + b!.X), | 10.) --tau--> ((Z | Y) | Z)
Z=Y |

Process: | CCS- succ 6
((X | Y) | Z) | CCS> 6-th successor via action a!:

CCS- steps | ((X | Y) | O)
CCS> All successors: | CCS- steps
0.) --a!--> ((Z | Y) | Z) | CCS> All successors:
1.) --a?--> ((X | Z) | Z) | 0.) --a!--> ((Z | Y) | O)
2.) --a!--> ((X | O) | Z) | 1.) --a?--> ((X | Z) | O)
3.) --b!--> ((X | X) | Z) | 2.) --a!--> ((X | O) | O)
4.) --tau--> ((Z | Z) | Z) | 3.) --b!--> ((X | X) | O)
5.) --a?--> ((X | Y) | Z) | 4.) --tau--> ((Z | Z) | O)
6.) --a!--> ((X | Y) | O) |
7.) --b!--> ((X | Y) | X) | CCS-

Fig. 1. A sample run of CCI, where “CCS-” is the prompt of the interpreter, “steps”
asks the tool to list all possible next steps, and “succ i” selects i-th step thereof

4 Students Interacting with Processes

Our introduction to CCS is accompanied by intensive practical work. To make
this possible we have beforehand implemented the semantics of L0 and L, and
CCS in an exemplary way in SML. The code is written only using concepts the
students have learnt about before. The resulting tool, CCS interpreter (CCI),
can best be described as an interactive exploration tool where the state space
of a CCS-process is explored in a stepwise manner. An example run of CCI can
be found in Fig. 1.

CCI enables the students to experiment with concurrent processes in a playful
way. The usage of CCI improves the way the students dealt with CCS and allowed
for an appealing way to discover interesting phenomena of concurrency interac-
tively. In the following we present two exercises, where the students are asked to
explore the system state space.Thefirst is a typical example of resource contention.

Exercise 135. Consider the following set of recursive equations Γ .

CDWriter = getW ?.putW ?.CDWriter
CDReader = getR?.putR?.CDReader
User1 = getR!.getW !.rip!.burn!.putW !.putR!.User1
User2 = getW !.getR!.rip!.burn!.putR!.putW !.User2

Explore Reach(� (CDReader | CDWriter | User1 | User2) \ H �Γ ), where H con-
tains all actions except rip!, rip?, burn! and burn? . What do you observe when
you explore the process up to depth 3?

The system may run into a deadlock. Our second example introduces the famous
dining philosophers problem.
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steps Γ 0 = ∅
steps Γ m.P = {(m, P )}
steps Γ X = steps Γ (ΓX)

steps Γ (P + Q) = (steps Γ P ) ∪ (steps Γ Q)

steps Γ (P |Q) = {(m, P ′|Q) | (m, P ′) ∈ steps Γ P}
∪ {(m, P |Q′) | (m,Q′) ∈ steps Γ Q}
∪ {(τ, P ′|Q′) | ∃α : (α, P ′) ∈ steps Γ P ∧ (α, Q′) ∈ steps Γ Q}

steps Γ (P \ H) = {(m, P ′ \ H) | (m,P ′) ∈ steps Γ P ∧ m /∈ H}

Fig. 2. Defining equations of steps

Exercise 136. Consider the following set of recursive equations Γ .

Fork1 = getF1?.putF1?.F ork1
Fork2 = getF2?.putF2?.F ork2
Fork3 = getF3?.putF3?.F ork3

PhilA = getF1!.getF2!.eat!.putF1!.putF2!.think!.PhilA
PhilB = getF2!.getF3!.eat!.putF2!.putF3!.think!.PhilB
PhilC = getF3!.getF1!.eat!.putF3!.putF1!.think!.PhilC

Use Google to learn about the “dining philosophers”. Explore

Reach(� (Fork1 | PhilA | Fork2 | PhilB | Fork3 | PhilC �Γ ) \ H

where H contains all actions except eat!, eat?, think! and think? . After which
trace will the philosophers have to starve.

In the sequel, after the relevant theory of CCS is fully developed and experi-
mented with, the students are supposed to understand how this tool is actually
implemented in SML. We follow two goals with this: The students learn how one
can derive a usable implementation of a formally specified language, including
all necessary intermediate steps like syntax parsing, applying inference rules,
execution. Furthermore, the students deepen their understanding of the CCS
semantics by implementing it.

The core of our implementation — realising the semantics of CCS — is the
function steps. It derives the set of all immediate successor of a CCS term
reachable via a given action relative to the set of defining equations Γ . An
implementation independent definition of this procedure is provided in Fig. 2 by
a set of defining equations. Note that the function steps implicitly implements
the complete semantics of CCS, which is given by labelled graphs over the
vertex set CCS. steps gives us all successors of a vertex (dependent of the
label/action) and hence uniquely determines the corresponding graph. Readers
familiar with SML might find it interesting to see some detailed fragments of the
implementation of CCS semantics (cf. Fig. 3). We do not present other parts of
the implementation like, e.g., syntax parsing.
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datatype lab = In of
name | Out of name | Tau type labset = lab list

datatype ccs = Stop (* stop *)
| Var of var (* process variable *)
| Pre of lab * ccs (* prefix *)
| Chc of ccs * ccs (* choice *)
| Par of ccs * ccs (* parallel *)
| Res of ccs * labset (* restriction *)

(* lab -> (lab * ccs) list -> ccs list *)
fun successors act sl = ...

(* lab -> lab *)
fun complement (In a) = ...
| complement (Out a) = ...
| complement Tau = ...

(* env -> ccs -> (lab * ccs) list *)
fun steps env Stop = []
| steps env (Var X) = steps env (env X)
| steps env (Pre (u,P)) = ...
| steps env (Chc (P,Q)) = (steps env P) @ (steps env Q)
| steps env (Par (P,Q)) = (map (fn (a,G) => (a,Par(G,Q)))

(steps env P))@
(map (fn (a,G) => (a,Par(P,G)))

(steps env Q))@
(foldl (fn ((a,P’), l1) =>
((map (fn (Q’)=> (Tau,Par(P’,Q’)))

(successors (complement a)
(steps env Q))

)
handle TauComplement => [])@l1
)

nil (steps env P)
)

| steps env (Res (G, set)) = ...

Fig. 3. Implementation of steps

The code made available to the students is for the language L. It is deliberately
left incomplete in a way similar to what is depicted in Fig. 3, and it is left as an
exercise to the students to fill the holes. With the implementation of steps, the
student have learnt how to implement semantics. In a series of accompanying
exercises and recommended readings in [24], the students finally are able to
implement other parts of CCI, like syntax parsing, etc., and hence implement a
complete interpreter for CCS from the incomplete one for L.
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One fine point might be noteworthy: the function steps does not terminate if
the environment Γ contains equations where structural recursion immediately
reduces a variable X to itself, as in X = X , X = a.X + X or X = X |a.X .
At least in the presence of the parallel operator there is no way to circumvent
this without changing the semantics, because processes may have a (countably)
infinite number of successors that can be obtained by a repeated application
of the recursion rule. This phenomenon was not discussed thoroughly in our
introductory course, but we sensitised the students to this problem by means
of an exercise, where we pointed out the problem and proposed the following
solution: we replace the expression X by u.X in the abstract grammar. Thus
structural recursion never yields the same term again (the students were actually
asked to prove this). Note that this change alters the semantic expressivity of the
language. Now for every process expression P the corresponding labelled graph
� P � is guaranteed to be finitely branching!

5 Lessons Learnt

This paper has described an approach to teaching the principles of concurrency
theory to first year Bachelor students. We focused on the basic theory of CCS,
which the students were made to experiment with, exploring examples like the
dining philosophers with their own implementation of the CCS semantics. We
also exposed them to some more advanced topics such as bisimulation and con-
gruence relations.

Our approach replaces the last third of an SML-based introductory course
to computer science and computer programming. The integration of the new
material into the existing course turned out to be rather seamless. We managed
to keep the flavour of the course of being “executable mathematics”.

With the implementation of CCI the students learn to implement their first
non-trivial SML program and to apply various concepts they studied in the
lectures. They thus develop a deeper understanding of the semantics of CCS,
and the intricacies of concurrency on pertinent examples.4

The students reaction on the course, and in particular the new part was encour-
aging. They generally found it challenging, interesting and enlightening. Similar
comments were made about the entirety of the course, but it was explicitly ac-
knowledged that the new part was having an obvious practical motivation. Of
course, some students (especially those who had failed before and thus had to
repeat the course) were irritated by the fact that we modified a generally well-
accepted course. The student success ratio for this course edition turned out to be
very much in line with earlier versions of the course. To pass the course, students
had to succeed in two out of three written exams of 150 min length each.

More generally, we feel that the material we cover can also be added to other
early courses in computer science curricula in a similar way. This paper has
identified the base requirements needed, and we expect them to be part of the
genuine first term education in computer science. Only the SML part is specific
4 The source code of CCI is available from the authors upon request.
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to our setup, but other, e.g., Java-based versions seem equally well possible to
us, however, without the flair of “executable mathematics”.

With respect to the general question whether to teach functional languages
early or late within computer science curricula, we feel that the early approach
implemented in Saarbrücken is a good one, in particular because it aligns the
student skills to the required level of mathematics right from the start of their
education, and is a clear indication — if not a roadblock — for those students
who hope to be able to avoid mathematics. This appears as an important aspect
since no specific entrance level requirements are imposed for Bachelor students.

One may wonder whether other models of concurrency, in particular Petri
nets [11] would work equally well – or even better – in such a teaching context
as CCS did. We are unable to contribute substantially to such a general debate.
For our specific context, the choice of a CCS-like language was instrumental since
it appeared as a very natural extension to the course contents, and it allowed to
initiate awareness of principal and advanced concurrency phenomena.

In the meanwhile the awareness of concurrency has further grown within our
faculty, and it has been decided that more time should be devoted to concurrency
theory and practise. Therefore, the topic of Concurrent Programming has been
promoted to a new course (with 6 ETCS credit points), mandatory for all Bach-
elor students. In this new course, the CCS material we developed is the nucleus
of its first third, but enriched with other educational material [6,7,9,22]. The
second third will be devoted to a more general introduction to models of concur-
rency, covering Petri nets [11], event structures [27], sequence diagrams [17] and
also transaction level modelling, as used in the hardware industry nowadays [13].
We plan to discuss their respective semantic fine-points on the basis of seman-
tic mappings onto transition system — apart from the true-concurrency aspects,
which will get explicit attention. In the final third of this new course, the problem
of concurrency will be reflected on from a practical programming perspective.
In this part we are going to teach multithreaded imperative programming, in
both Java and C++. The course Concurrent Programming is scheduled in the
second term of the first or second year of the Bachelor curriculum. The second
year option is due to organisational constraints (averaging workload per term),
and is deemed late by many colleagues. Good students are encouraged to take
the course right after “Programming 1”, which maintains its original contents.
The first edition of this course is scheduled to start April 2008.

Acknowledgments. This work is supported by the DFG as part of the Transre-
gional Collaborative Research Center SFB/TR 14 AVACS and by the European
Commission under the IST framework 7 project QUASIMODO.
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Abstract. Process algebras are formalisms for modelling concurrent systems
that permit mathematical reasoning with respect to a set of desired properties.
TAPAs is a tool that can be used to support the use of process algebras to spec-
ify and analyze concurrent systems. It does not aim at guaranteeing high perfor-
mances, but has been developed as a support to teaching. Systems are described
as process algebras terms that are then mapped to labelled transition systems
(LTSs). Properties are verified either by checking equivalence of concrete and
abstract systems descriptions, or by model checking temporal formulae over the
obtained LTS. A key feature of TAPAs, that makes it particularly suitable for
teaching, is that it maintains a consistent double representation of each system
both as a term and as a graph. Another useful didactical feature is the exhibition
of counterexamples in case equivalences are not verified or the proposed formulae
are not satisfied.

Keywords: concurrency, property verification, process algebras, bisimulation,
behavioural equivalences, modal logics.

1 Introduction

Process algebras are a set of mathematically rigorous languages with well-defined se-
mantics that permit describing and verifying properties of concurrent communicating
systems. They can be seen as mathematical models of processes, regarded as agents that
act and interact continuously with other similar agents and with their common environ-
ment. The agents may be real-world objects (even people), or they may be artefacts,
embodied perhaps in computer hardware or software systems.

Process algebras provide a number of constructors for system descriptions and
are equipped with an operational semantics that describes systems evolution. More-
over, they often come equipped with observational mechanisms that permit identifying
(through behavioural equivalences) those systems that cannot be taken apart by external
observations. In some cases, process algebras have also complete axiomatizations, that
capture the relevant identifications.

There has been a huge amount of research work on process algebras carried out
during the last 25 years that started with the introduction of CCS [18,19], CSP [6]
and ACP [4]. In spite of the many conceptual similarities, these process algebras have
been developed starting from quite different viewpoints and have given rise to differ-
ent approaches: CCS relies on an observational bisimulation-based theory starting from
an operational viewpoint. CSP was motivated as the theoretical version of a practical

K. Jensen, W. van der Aalst, and J. Billington (Eds.): ToPNoC I, LNCS 5100, pp. 54–70, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



TAPAs: A Tool for the Analysis of Process Algebras 55

language for concurrency and is still based on an operational intuition which, how-
ever, is interpreted w.r.t. a more abstract theory of decorated traces. ACP started from
a completely different viewpoint and provided a purely mathematical algebraic view of
concurrent systems: ACP processes are the solutions of systems of equations (axioms)
over the signature of the considered algebra; operational semantics and bisimulation (in
this case a different notion of bisimulation — branching bisimulation — is considered)
are seen as just one of the possible models over which the algebra can be defined and
the axioms can be applied. At first, the different algebras have been developed com-
pletely separately. Slowly, however, their strict relationships have been understood and
appreciated, nevertheless in university courses they have been taught separately. Thus
we have seen many books on CCS [19], CSP [15,22,23], ACP [3,11], Lotos [5] but not
a book just on process algebras aiming at showing the underlying vision of the general
approach. We feel that it is time to aim at teaching the general theory of process alge-
bras and seeing the different languages as specific instances of the general approach.
The tool we describe in this paper aims at supporting such courses.

The main ingredients of a specific process algebra are:

1. A minimal set of well thought operators capturing the relevant aspect of systems
behavior and the way systems are composed.

2. A transition system associated with the algebra via structural operational semantics
to describe the evolution of all systems that can be built from the operators.

3. An equivalence notion that permits abstracting from irrelevant details of systems
descriptions.

Often process algebras come also equipped with:

4. Abstract structures that are compositionally associated with terms to provide deno-
tational semantics.

5. A set of laws (axioms) that characterize behavioural equivalences to obtain a so
called algebraic semantics.

Verification of concurrent system within the process algebraic approach is performed
either by resorting to behavioural equivalences for proving conformance of processes to
specifications that are expressed within the notation of the same algebra or by checking
that processes enjoy properties described by some temporal logic’s formulae [7,16].

In the former case two descriptions of a given system, one very detailed and close
to the actual concurrent implementation, the other more abstract describing the ab-
stract tree of relevant actions the system has to perform are provided and tested for
equivalence.

In the latter case, concurrent systems are specified as terms of a process description
language while properties are specified as temporal logic formulae. Labelled transition
systems (LTS) are associated with terms via a set of structural operational semantics
rules and model checking is used to determine whether the transition systems associated
with those terms enjoy the property specified by the given formulae.

In both approaches LTSs play a crucial role; they consist of a set of states, a set
of transition labels and a transition relation. States correspond to the configurations
systems can reach. Labels describe the actions systems can perform to interact with
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the environment. Transition relation describes systems evolution as determined by the
execution of specific actions. Temporal logic formulae are a mix of logical operators and
modal operators. The former are the usual boolean operators, while the latter are those
that permit reasoning about systems evolution in time and to deal with the dynamic
aspects of LTSs.

LTSs are also the central ingredient of TAPAs, the software tool that we have im-
plemented to support teaching of process algebras. Indeed, the main components of
TAPAs are those permitting to minimize LTSs, to test their equivalence and to model
check their satisfaction of temporal formulae. By relying on a sophisticated graphical
user interface TAPAs permits:

– Understanding the meaning of the different process algebras operators by showing
how these operators can be used to compose terms and the changes they induce on
the composed transition systems.

– Appreciating the close correspondence between terms and processes by consis-
tently updating terms when the graphical representation of LTS is changed and
redrawing process graphs when terms are modified.

– Evaluating the different behavioural equivalences by having them on a single plat-
form and checking the different equivalences by simply pushing different buttons.

– Studying model checking via a user friendly tool that, in case of failures, provides
appropriate counterexamples that help debugging the specification.

The rest of the paper is organised as follows. In Sect. 2, we provide an overview of the
front end of TAPAs and show how it can be used for specifying behaviours of concurrent
systems. In Sect. 3, we describe the components that can be used for verifying systems
behaviours. In Sect. 4, we consider a more elaborate case study dealing with mutual
exclusion algorithm. The final section contain a few concluding remarks and gives a
brief account of related tools.

2 Textual and Graphical Representation of Processes

TAPAs1 [1] is a graphical tool, developed in JAVA, which aims at simplifying the speci-
fication and the analysis of concurrent systems described by means of process algebras.
This tool has been used for supporting teaching Theory of Concurrency in a course of
the Computer Science curriculum at ‘Università degli Studi di Firenze’. TAPAs archi-
tecture is outlined in Fig. 1. It consists of five components: an editor, a run-time environ-
ment, a model checker, an equivalence checker and a minimizer. TAPAs editor permits
specifying concurrent systems as terms of a process algebra: terms can be inserted into
the system by using either a textual representation or a graphical notation. The run-
time environment permits generating the Labelled transition system corresponding to
a given specification. Model checker and equivalence checker can be used for analyz-
ing system behaviours. The former permits verifying whether a specification satisfies

1 TAPAs is a free software; it can be redistributed and/or modified under the terms of the GNU
General Public License as published by the Free Software Foundation.
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Fig. 1. TAPAs Architecture

a logic formula of modal µ-calculus [16], the latter permits verifying whether two im-
plementations of the same system are equivalent or not. Finally, the minimizer permits
reducing the size of LTS with large number of states while preserving the intended
behaviour.

In TAPAs concurrent systems are described by means of processes, which are non-
deterministic descriptions of system behaviours, and process systems, which are ob-
tained by process compositions. Notably, processes can be defined in terms of other
processes or other process systems. Processes and process systems are composed by
means of the operators of a given process algebra. For instance, in the case of CCS, a
process system can be obtained by parallel composition with binary synchronisation,
relabelling and restriction of processes, while in case of CSP a process system can be
also obtained by using parallel composition with multi-party synchronisation, internal
and external choice operators and hiding.

The TAPAs editor permits defining processes and process systems by using both
graphical and textual representations. A process is graphically represented by a graph
whose edges are labeled with the actions it can perform. The same process can be
represented (textually) by a term of a specific process algebra. A user can always change
the process representation: TAPAs guarantees the synchronization between the graph
and the corresponding term. TAPAs does not rely on specific process algebra to be used
for the systems specification. Currently, we are using CCSP2 a process algebra obtained
from CCS by incorporating some operators of CSP. However, thanks to the modular
implementation of TAPAs, other process algebras can be easily added. Specifically,
adding a new process algebra to TAPAs requires developing two JAVA packages: one
for modelling the operational semantics of the operators and the other for defining the
graphical representation of the operators.

Figure 2 shows two TAPAs processes that are the graphical representations corre-
sponding to the following CCSP processes:

2 Although the name is borrowed from [21] our variant is slightly different from the one consid-
ered by Olderog [21] and the one proposed by van Glabbeek and Vaandrager [24] due to the
different mix of operators.
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Fig. 2. Processes Bill and Ben

process Bill:

X1 = play?.Bill[X2]

X2 = meet?.nil

end

process Ben:

X1 = work?.Ben[X2]

X2 = meet!.nil

end

Process Bill can perform an input on channelplay and continue with an input on meet,
while process Ben can perform first an input on work and then an output on meet.

Process systems, like processes, are represented both graphically and textually. In the
first case, a system is represented by a box containing a set of elements. The process sys-
tem corresponding to the parallel composition of the processes Bill and Ben is shown
in the left hand side of Fig. 3. To guarantee synchronization between Bill and Ben,
channel meet is restricted. This is represented graphically by a black barrier around
parallel composition. The textual representation of BillBen process system is the
following:

system BillBen:

restrict {meet} in
Bill[X1] | Ben[X1]

end

end

The LTS generated by the run-time component, corresponding to the above process
system is reported on the right hand side of Fig. 3. To help the user to analyze the gener-
ated graph, TAPAs provides visualization algorithms for drawing LTSs; new algorithms
for drawing graphs can be easily plugged into TAPAs. When a LTS is generated start-
ing from a system process, TAPAs will check satisfaction of the syntactic conditions
that guarantee finiteness of the generated graph. When finiteness is not guaranteed, a
warning message is displayed.

2.1 Textual Specification of Terms

The TAPAs run-time environment takes as input a textual specification, written in some
process algebra, and generates the corresponding LTS, which can be used by the other
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Fig. 3. Process system BillBen and the corresponding LTS

components for model and equivalence checking. Currently, the only process algebra that
can be used to specify concurrent systems with TAPAs is CCSP. Its set of operators is not
intended to be minimal. Redundancy is tolerated for making it easier to specify systems
specifications while keeping them understandable. In this section, we present the syntax
and the operational semantics of the CCSP terms accepted by the run-time environment.

Basic elements of CCSP processes, as in most process calculi, are actions. Intuitively,
actions represent atomic computational steps, that can be internal or external. All inter-
nal actions are rendered as the silent action tau, while external actions are input/output
operations on channels (i.e., communication ports), and represent potential interactions
with the external environment.

CCSP syntax: The syntax of a CCSP module is given in Table 1; there we have used
∑

i∈I ACT i
j .PROC i

j for ACT 1
j .PROC 1

j + · · · + ACT n
j .PROC n

j if I = {1, . . . , n}.
The set of names N = PN ∪ XN ∪ CN ∪ SN contains (non-empty finite) sequences
of alphanumeric characters (including the symbol ) where:

– P ranges over the set of process names PN ,
– X ranges over the set of state names XN ,
– c ranges over the set of channel names CN ,
– S range over the set of system names SN .

A CCSP module is a sequence of process declaration and system declarations.
Processes are defined by “state name =

∑
i∈I action. process”, where an action can

be the silent action tau (where tau � CN), an output c! or an input c? on a channel
c, while a process can be the empty process nil (which cannot perform any actions),
a reference P[X] to the state X of the process P or a reference to a system S. Sys-
tems are defined as the composition via parallel operator (i.e., | ), external and internal
choice operators (i.e., [] and (+) respectively) of elements called components . These
can be processes or the result of applying an operation (multi-synchronization opera-
tion sync, renaming operation rename, restriction operation restrict) processes. The
multi-synchronization construct is inspired by the parallel operator of CSP and allows
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Table 1. CCSP syntax

M ::= PROC DEC | SYS DEC | M M (Module)

PROC DEC ::= process P : (Process dec.)
X1 =
∑

i∈I1
ACT i

1 .PROC i
1

· · ·
Xn =
∑

j∈In ACT j
n .PROC j

n

end

ACT ::= tau | c! | c? (Action)

PROC ::= nil | P[X] | S (Process)

SYS DEC ::= system S : COMP end (System dec.)

COMP ::= C | C 1 (+) C 2 | C 1 [] C 2 | C 1 | C 2 (Components)

C ::= PROC (Component)
| sync on CS in C 1 | C 2 end

| rename [F ] in COMP end
| restrict CS in COMP end

CS ::= * | {c1 , . . . , cn} (Channel set)

F ::= c/c’ | F , F (Renaming fun.)

parallel components to synchronize on any channel of the specified set when all of them
can perform the same action. Renaming and restriction are the standard CCS operators;
the former permits changing channel names, while the latter is used for delimiting their
scope. For multi-synchronization and restriction operations, we use the wildcard sym-
bol * to indicate CN , i.e., the set of all channel names.

CCSP operational semantics: CCSP operational semantics is defined only for well-
formed modules, i.e., modules where all used states, processes and systems have cor-
responding declarations. Moreover, it is assumed that states and systems names are
distinct, well-formedness check can be statically performed. CCSP semantics is pro-
vided relatively to a module M that contains the necessary definitions. It is described

as a labelled transition relation
µ−−→ over components induced by the rules in Table 2,

where µ is generated by the following grammar:

µ ::= tau | α α ::= c! | c?

The meaning of labels is the following: tau represents internal computational steps,
while c! and c? denote execution of output and input actions on channel c, respectively.
An input and output on the same channel are called complementary labels. We will use
ᾱ to denote the complement of α (i.e., c! = c? and c? = c!), and act(CS) to denote
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Table 2. CCSP operational semantics w.r.t. module M

(Pre f )
( process P : . . . Xi =

∑
j∈I ACT j

i .PROC j
i . . . end ) ∈ M

(k ∈ I)

P[X i]
ACT k

i−−−−−→ PROC k
i

(S re f )
( system S : COMP end ) ∈ M COMP

µ−−→ COMP′

S
µ−−→ COMP′

(Broad1)
C 1

µ−−→ C′ µ � act(CS)

sync on CS in C 1 | C 2 end
µ−−→ sync on CS in C′ | C 2 end

(Broad2)
C 2

µ−−→ C′ µ � act(CS)

sync on CS in C 1 | C 2 end
µ−−→ sync on CS in C 1 | C′ end

(Broad3)
C 1

α−−→ C ′1 C 2
α−−→ C ′2 α ∈ act(CS)

sync on CS in C 1 | C 2 end
α−−→ sync on CS in C ′1 | C ′2 end

(Ren)
COMP

µ−−→ COMP′

rename [ F ] in COMP end
F(µ)−−−−→ rename [ F ] in COMP′ end

(Res)
COMP

µ−−→ COMP′ µ � act(CS)

restrict CS in COMP end
µ−−→ restrict CS in COMP′ end

(S ync)
C 1

α−−→ C ′1 C 2
ᾱ−−→ C ′2

C 1 | C 2
tau−−−→ C ′1 | C ′2

(Inter1)
C 1

µ−−→ C ′1

C 1 | C 2
µ−−→ C ′1 | C 2

(Inter2)
C 2

µ−−→ C ′2

C 1 | C 2
µ−−→ C 1 | C ′2

(Int. choice1) C 1(+) C 2
tau−−−→ C 1 (Int. choice2) C 1(+) C 2

tau−−−→ C 2

(Ext. choice1)
C 1

α−−→ C′

C 1[] C 2
α−−→ C′

(Ext. choice2)
C 2

α−−→ C′

C 1[] C 2
α−−→ C′

(Ext. choice3)
C 1

tau−−−→ C′

C 1[] C 2
tau−−−→ C′[] C 2

(Ext. choice4)
C 2

tau−−−→ C′

C 1[] C 2
tau−−−→ C 1[] C′
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the set of actions corresponding to the channels of CS (i.e., tau � act(CS), while
c!, c? ∈ act(CS) if either c ∈ CS or CS = ∗).

Rule (Pre f ) states that processP[X] evolves by performing one of the actions thatP can
execute from state X; the actual choice is nondeterministic. A system name evolves ac-
cording to the actions of the body of the corresponding declaration, rule (S re f ). Rules for
renaming, restriction, parallel composition, internal and external choice are standard (see
[6,18]).Finally, rules(Broad1)and(Broad2)permit the interleavingof theactionsofparal-
lelcomponentswhenactionsoutsidethespecifiedchannelsetareperformed,rule(Broad3)
allows multiple synchronization of processes on one of the synchronization channels.

2.2 Graphical Specification of Terms

In this section, we present the graphical formalism used for defining processes and
prosess systems. TAPAs editor provides two separate kind of windows that can be used
to draw processes and process systems (see Fig. 4).

Generally, the graphical representation of processes is independent from a specific
process algebra, except for the labels corresponding to the actions of the algebras. A
process is rendered as a graph; its edges describe the performed actions and their effect,
while its nodes represent systems configurations. We have four kinds of nodes:

1. Terminal identify a terminal state (e.g. the empty process nil) and are represented
as a red circle with a black dot.

2. State Reference identify states defined within the considered process, and are rep-
resented as a red circle. Only this kind of nodes can have outgoing edges.

3. Process Reference identify states defined in another processes, and are represented
as a red box.

4. System Reference identify systems, and are represented as a white box.

Fig. 4. A TAPAs screenshot
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Fig. 5. Graphical representation of TAPAs nodes

Fig. 6. Graphical representation of a process system

Figure 5 shows the graphical representation of the process below, if P1 is a process
and Sys is a system.

process P2:

start = a?.nil + b?.P2[X1] + c?.P1[X] + d?.Sys

X1 = e!.nil

end

Process systems are graphically represented via nested boxes; each box represents
either one of the system operators or a reference to a process or to a process system.
For the sake of clarity, each system operator has a specific graphical box.

Figure 6 reports the graphical representation of the following process system:

restrict {a,b} in
R[Z] [] P[X]

end

|

sync on {a,c} in
Q[Y] | Sys

end

The outermost enclosing box represents the top level operator that, in this case, is par-
allel composition while its arguments are drawn as inner boxes. There are two inner
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components, one is a restriction the other is a multi-synchronization. Restriction is ren-
dered as a box surrounded by a black barrier and contains an external choice between
processes R[Z] and P[X]. Multi-synchronization is rendered as a box with a yellow
frame that contains process Q[Y] and system Sys. When a box is selected, other para-
meters of the corresponding operator, such as restricted names, are shown in a separate
table.

3 Verification of Process Properties

The LTS generated by the run-time environment can be used by the other TAPAs com-
ponents to analyze the corresponding concurrent systems. The analysis can be per-
formed either by an equivalence checker or by a model checker.

The TAPAs Equivalences Checker permits verifying different kind of equivalences
between pairs of systems. It is worth noting that, if other process algebras (e.g. value-
passing CCS, ACP, . . . ) were to be added to TAPAs, their integrations with the equiva-
lence checker would be seamless.

Currently, TAPAs permits checking two kinds of equivalences:

1. Bisimulations based equivalences (strong, weak and branching) [19,26];
2. Decorated trace equivalences (weak and strong variants of trace completed trace,

divergence sensitive trace, must, testing) [9,14].

Decorated trace equivalences have been implemented by combining a set of flags,
which enable or disable checking specific properties (see Fig. 7 left side). Flags, and
their meanings, are the following:

– WEAK: weak equivalences;
– CONV: convergence sensitive equivalences;
– FINL: equivalences sensitive to final states;

Fig. 7. Equivalence and Model Checker panels
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– ACPT: equivalences sensitive to acceptance sets;
– HIST: equivalences that consider past divergences as catastrophic;
– CUTC: equivalences that ignore all behaviours after divergent nodes.

As an example, weak trace equivalence is obtained by enabling only the WEAK flag,
the completed trace equivalence is obtained by enabling the FINL flag, and the weak
completed trace is obtained by enabling the WEAK and the FINL flags.

Whenever an equivalence check turns out to be unsuccessful, TAPAs provides coun-
terexamples, i.e., evidences that the analysed systems do behave differently. Hennessy-
Milner logic [13] formulae that capture a property satisfied only by one of the two
in-equivalent processes are exhibited.

Equivalence checker algorithms are also used for implementing a LTSs Minimizer.
This module allows users to minimize LTSs with large number of states while preserv-
ing strong, weak or branching bisimulation.

TAPAs can be used to analyze concurrent systems also by verifying satisfaction of
properties, expressed as logical formulae. This task can be achieved by using the Model
Checker that implements a Local Model Checking Algorithm [27], and permits verify-
ing satisfaction of modal logic formulae by system processes (Fig. 7 right side).

For efficiency reasons, the model checker takes as input only µ-calculus formulae [16].
However, TAPAs can be easily extended to accept also formulae from other logics like,
for instance, Action Computation Tree Logic (ACTL) [10] that turns out to be more user
friendly. Formulae of the new logics will have to be translated in equivalent µ-calculus
ones and their verifications will be performed on the outcome of the translation.

4 The Study of a Mutual Exclusion Algorithm

In this section we present the mutual exclusion problem, one of the simpler examples
that are used for supporting concurrency theory courses.

Mutual exclusion algorithms are used in concurrent programming to avoid that
pieces of code, called critical sections, simultaneously access a common resource, such
as a shared variable. We consider Peterson’s algorithm, that allows two processes to
share a single-use resource without conflicts. The two processes, P1 and P2, are defined
by the following symmetrical pieces of pseudocode:

P1 P2

while true do { while true do {
<noncritical section> <noncritical section>
B1 = true; B2 = true;
K = 2; K = 1;
while (B2 and K==2) do skip; while (B1 and K==1) do skip;
<critical section> <critical section>
B1 = false; B2 = false;
} }

The two processes communicate by means of three shared variables, B1, B2 and K.
The first two are boolean variables and are true when the corresponding process wants
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Fig. 8. Process P1

to enter the critical section. The last variable contains the identifier of the process (i.e., 1
or 2) whose turn it is. The algorithm guarantees mutual exclusion: P1 and P2 can never
be in their critical sections at the same time.

The three variables can be easily modelled in TAPAs as two-states processes, where
each state represents a value that the variable can assume. Similarly, processes P1
and P2 can be modelled as TAPAs processes. Since the two processes are symmetric,
Fig. 8 shows only one of them (i.e., P1). The complete process system, reported in
Fig. 9, is obtained by putting the five processes in parallel and by restricting the syn-
chronization channels; it has the following textual representation:

system Sys:

restrict { ktest1, kset2, ktest2, b1setFalse, b1testFalse,
kset1, b2testFalse, b2testTrue, b1testTrue,

b1setTrue, b2setTrue, b2setFalse } in
B1[true] | B2[true] | K[1] | P1[X] | P2[X]

end

end

Sys can interact with the external environment only by means of channels enter1,
enter2, exit1 and exit2, that represent entering and exiting of the two processes
from the critical sections.

Generally, after showing this example, we ask to students to try to find an alterna-
tive solution of the mutual exclusion problem. For instance we could ask to provide
an alternative formalization that does not rely on shared variables. A possible solution
is that based on the multi-synchronization operator. The algorithm that uses the multi-
synchronization operator is reported in Fig. 10.
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Fig. 9. The process system Sys

process P1:

X -> enter1!.P1[X2] + enter2!.P1[X3]

X2 -> tau.P1[X4]

X3 -> exit2!.P1[X]

X4 -> exit1!.P1[X]

end

process P2:

X -> enter2!.P2[X2]

+ enter1!.P2[X3]

X2 -> tau.P2[X4]

X3 -> exit1!.P2[X]

X4 -> exit2!.P2[X]

end

system BroadSys:

sync on {enter1, enter2, exit1, exit2} in
P1[X] | P2[X]

end

end

Fig. 10. The CCSP representation of the Mutual exclusion algorithm using broadcast

There, enter1 and enter2 are synchronization channels; therefore the two
processes P1 and P2 have to perform the same actions; if enter1! is the performed
action, then P1 can enter its critical section and P2must wait until P1 exits; if enter2!
is the performed action, then P2 can enter its critical section and P1 must wait until
P2 exits. This simple example is useful for showing that different primitives (multicast
messages or singlecast messages) permit developing different solutions.

Using TAPAs students can verify properties of the systems. By means of the equiv-
alence checker, equivalence of the system’s implementation and the mutual exclusion
specification reported in Fig. 11 can be tested. Process Spec models the cyclical be-
haviour of entering and exiting of P1 and P2 (without distinction between them) from
their critical sections. In this way it is specified that they can never be in the critical sec-
tions at the same time: two consecutive actions enter! cannot be performed. Notably,
at this level of abstraction it is not necessary to identify the actual process that is using
its critical section. Thus, before executing the test, Sys and BroadSysmust be slightly
modified as follows:

rename [enter/enter1, enter/enter2, exit/exit1, exit/exit2] in

Sys/BroadSys

end
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Fig. 11. Mutual exclusion specification

The processes we have just modified and Spec are weakly bisimilar. However, due to
busy-waiting, Sys is not testing equivalent to Spec, because Sys can diverge while
BroadSys cannot.

The behaviour of the systems specified so far can also be verified through the TAPAs
model checker. For instance, it can can be verified that the implementations of Peter-
son’s algorithm and the one based on multi-synchronization enjoy the following rele-
vant properties specified in µ-calculus [16].

– Deadlock-freedom. In each state, the system can perform at least one action:

νX.〈−〉true ∧ [−]X

– Livelock-freedom. The system cannot reach a state where it can perform only infi-
nite sequences of internal actions:

¬µX.〈−〉X ∨ νY.[−τ]false ∧ 〈τ〉true ∧ [τ]Y

– Starvation-freedom. If a process wants to enter its critical section, eventually it
succeeds:

µX.[−]X ∨ 〈enter i!〉true
At the end of the academic course we assign to students a case study and they have

to specify and verify it using TAPAs. We have noticed that, at first, students try to
specify all the features of the system, even those redundant and not necessary. Often,
after experiencing problems related to the state space explosion they understand the
need of abstract description. Thus, they reduce the number of the states by simplifying
the system omitting the unnecessary aspects, to capture only the interesting behaviour
of the analysed system. In some case they also use the minimisation facility to reduce
the size of the components before actually composing them to obtain systems.

5 Conclusions and Related Work

We have introduced TAPAs, a tool for the specification and the analysis of concurrent
systems. TAPAs has been designed to support teaching concurrency and one of its dis-
tinguishing feature is the independence from specific process algebras and logics, that
is guaranteed by its generic graphical formalism. TAPAs assigns a central role to LTS.
By considering the LTS associated to the different terms students can appreciate simi-
larities and differences between the operators. Moreover, by studying the effect of some
of the most important equivalences over LTS, students can appreciate their impact on
specific calculi and gain insight into the nature of their nature.
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By comparing the lectures where TAPAs was used as teaching support with the
‘classical’ ones, we have noticed that the students got significantly more interested in
the subject. The students that have developed simple (but realistic) case studies using
TAPAs, have shown a deeper understanding of process algebras, behavioural equiva-
lences and model checking. In spite of its didactical nature, TAPAs has also been used
to deal with more complex systems and we plan to use it to gently expose researchers
from industry to the use of formal methods.

In the last years many other tools were developed, but, generally, they are not in-
tended to support teaching: some tools have not a graphical user interface, others do not
support the process algebras commonly used in the academic courses (CCS, CSP) and
just few tools allow the graphical specification.

One of the most used tool for teaching concurrency, that follows a process algebraic
approach, is LTSA [17]. It permits generating LTS starting from a term written in a
simple process algebra (named FSP), but it does not allows a direct graphical speci-
fication of terms. LTSA allows the verification of systems properties by reachability
analysis based on formulae of a Linear Time Temporal logic (named Fluent LTL), and
it generates traces leading to failures whenever the specified property is not satisfied.
Differently from TAPAs, LTSA does not provide an equivalence checker.

Another well-known tool for process algebras is CADP [12]: it offers a wide set
of functionalities, ranging from step-by-step simulation to massively parallel model-
checking, but it does not allow the graphical specification and the systems descriptions
have to be written in LOTOS [25] that is not a widely used process algebra.

CWB [20] and CWB-NC [2] are very efficient tools that permit specifying and veri-
fying properties of concurrent systems. These tools support many process algebras and
can be used for checking many behavioural equivalences. However, both CWB and
CWB-NC do not provide a graphical interface that can be used for describing con-
current systems. Clearly, this can make difficult to use tools in academic course for
introducing theory of concurrency.

As a future work, we plan also to continue the development by adding modules to
deal with other process algebras, such as value-passing CCS [19] and LOTOS, and with
other logics. Moreover, we will add other analysis tools, such as a simulator that allows
“animating” the system showing the possible interactions between its components. We
plan also to improve the TAPAs back end in order to support systems with a larger state
space. Moreover we plan to enrich TAPAs along the lines of PAC [8] to permit users to
define their own operators and to generate the LTS associates to terms containing these
new operators.

Acknowledgments. We would like to thank Fabio Collini, Massimiliano Gori, Stefano
Guerrini and Guzman Tierno for having contributed with their master theses to the
development of key parts of the software at the basis of TAPAs.
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Abstract. Message Sequence Charts (MSCs) are often used by software
analysts when discussing the behavior of a system with different stake-
holders. Often such discussions lead to more complete behavioral models
in the form of, e.g., Event-driven Process Chains (EPCs), Unified Mod-
eling Language (UML), activity diagrams, Business Process Modeling
Notation (BPMN) models, Petri nets, etc. Process mining on the other
hand, deals with the problem of constructing complete behavioral models
by analyzing event logs of information systems.

In contrast to existing process mining techniques, where logs are as-
sumed to only contain implicit information, the approach presented in
this paper combines the explicit knowledge captured in individual MSCs
and the techniques and tools available in the process mining domain.
This combination allows us to discover high-quality process models.

To constructively add to the existing work on process mining, our
approach has been implemented in the process mining framework ProM
(www.processmining.org).

Keywords: message sequence charts, process mining, synthesis of
scenarios-based models.

1 Introduction

Message Sequence Charts (MSCs) [26, 29] are a well-known language to specify
communication between processes, and are supported by many tools, standards,
and approaches, e.g., the Object Management Group (OMG) has decided to
adapt a variant called sequence charts in the UML notational framework [21]. In
this paper we look at MSCs that are restricted to (using) agents and messages.
We do not consider structured language features such as choice and iteration
introduced by the UML 2.0 standard, i.e., we consider basic MSCs rather than
high-level MSCs.

When developing a system it is often useful to describe requirements for the
system by MSCs were each MSC depicts a single scenario. For example, in a
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recent project, the staff and software developers at a hospital were asked to cap-
ture the requirements for a new pervasive health care system [20]. The strength
of MSCs is that each MSC depicts a single scenario using an intuitive nota-
tion. Therefore, they are easy to understand. However, at the same time, this
strength can be considered a weakness, since it is not clear how to consolidate
several scenarios describing the same system. For example, two MSCs may be
similar up to a certain point, after which they diverge. At the point where they
diverge, a decision was made (either by the environment or by a person involved
in the process). However, identifying the exact diversion point, the underlying
semantics of the decision can only be done by analyzing the two MSCs together,
and not in isolation. Hence, to get a good understanding of the system modeled
by the individual MSCs, one needs to consider all of them together, i.e., a single
process model needs to be synthesized from individual MSCs. For an elaborate
overview of the related work in this area, we refer to Sect. 5 of [10].

Considerable work has been done on the synthesis of scenario-based models
such as MSCs (see [19] for an overview). Existing approaches are very different
and typically have problems dealing with concurrency. Moreover, the majority of
approaches uses explicit annotations to “glue” MSCs together in a single model.
For example, high-level MSCs are used [18, 30, 31], but also “precharts”, “state
conditions” and similar concepts to explicitly relate MSCs [12, 24, 25]. Other
problems are related to performance, implied scenarios (i.e., the model allows
for more behavior than what has actually been observed), and consistency (e.g.,
the synthesized model contains deadlocks) [6, 7].

The research area of process mining [2, 3, 4, 11, 14, 16, 27] focuses on the syn-
thesis or process models from event logs, which in the process mining domain is
usually referred to as control flow discovery. Most existing control flow discovery
algorithms assume event logs to only contain the events as logged by an infor-
mation system, i.e., without any explicit information about the relation between
events. Therefore, these algorithms usually first abstract from the log to identify
these relations and then use this abstraction for constructing a process model,
represented using languages such as Event-driven Process Chains (EPCs), Petri
nets, Yet Another Workflow Language (YAWL) [1], or even Business Process
Execution Language (BPEL) [9].

In this paper, we present an approach to combine the synthesis of MSCs
and control flow discovery, by adapting process mining algorithms to take into
account the explicit information about relations between events present in MSCs.
Our approach is fully implemented in the process mining framework ProM [17,32]
which supports a wide variety of process modeling languages (Petri nets, EPCs,
YAWL, BPEL, transition systems, heuristics nets, etc.). Using ProM the process
mining results can be mapped on any of these languages.

This paper is organized as follows. First, in Sect. 2, we introduce MSCs and
a running example that we will use throughout the paper. In Sect. 3 we give an
overview of two existing process mining algorithms that we use in our approach.
Then, in Sect. 4, we show how to use the information contained in MSCs to
extend the two algorithms presented. Finally, we conclude the paper in Sect. 5.
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2 Message Sequence Charts and Online Bookstore
Example

As mentioned in Sect. 1, several variants of MSCs exists, such as UML 2.0
sequence charts [19] and live sequence charts [21]. In this paper we focus on
MSCs with only two syntactical constructs, i.e., agents and messages. Agents can
be used to denote a wide variety of entities ranging from software components
and Web services to people and organizations. A message is passed from one
agent to the other and therefore each message has a, (not necessarily different)
sending and receiving agent. An agent has a lifeline representing the sequence
of messages of which that agent is the sender or the receiver.

In this paper we will use a running example of an online bookstore, to explain
the various aspects of our approach. We modeled a process of ordering a book
at the bookstore in 20 different MSCs, containing 23 different messages. The
example refers to the following four types of agents:

Customer. A person that wants to buy a book.
Bookstore. Handles the customer request to buy a book. The virtual bookstore

always contacts a publisher to see if it can handle the order. If the bookstore
cannot find a suitable publisher, the customer’s order is rejected. If the
bookstore finds a publisher, a shipper is selected and the book is shipped.
During shipping, the bookstore sends a bill to the customer.

Publisher. May or may not have the book that the customer wants to buy.
Shipper. May or may not be able to carry out the shipping order.

Figure 1 shows two examples where the customer orders a book at the book-
store. In the first MSC the Customer sends a message place_c_order, which
is received by the Bookstore. The Bookstore then sends a message to itself,
signified by the box on the lifeline. Then the bookstore sends the message
place_b_order to the Publisher, and so on. The overall behavior is that the
customer orders a book, after which the bookstore asks two publishers if they
can deliver the book. Since none of them have it in stock, the bookstore has to
reject the customer’s order. The second MSC describes a similar scenario, but
here the customer actually receives the book.

We use the bookstore process as a running example in this paper, and in
Sect. 4, we show some models obtained through process mining. Note that the
agents in our example MSCs do not represent physical entities, i.e., in real life,
there might be multiple bookstores that do business with multiple publishers
and shippers. However, for process mining, this would only be important if the
organizational perspective is considered, which, in this paper, we do not.

3 Process Mining

The goal of process mining, or more specifically control flow discovery is to
extract information about processes from event logs, such that the control flow
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Fig. 1. Two MSCs of scenarios in our bookstore example

of a process is captured in a process model. In process mining an activity refers
to an atomic part of a process, which may be executed over any length of time
and by anyone. We refer to a case (we also refer to it as a process instance) as
the execution trace of a process.

The starting point for control flow discovery is an event log that contains
events such that:

1. Each event refers to an activity (i.e., a well-defined step in the process),
2. Each event refers to a case (i.e., a process instance) and
3. Events are totally ordered (for example by a timestamp).

Table 1 shows an example of a log involving 19 events and 5 activities. This
event log also contains information about the people executing the corresponding
activities (cf. the originator field Table 1). Often logs also contain information
about data associated to events, but for the work presented in this paper, this
information can be ignored.

Figure 2 shows some examples of process mining results that can be obtained
using an event log of Table 1. This figure clearly shows that process mining is
not limited to control flow discovery, i.e., the roles of the actors in the process,
as well as their social relations can be discovered as well. However, in this paper,
we only focus on the control flow, which is shown as a Petri net in Fig. 2.



Translating MSCs to other Process Languages Using Process Mining 75
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(a) The control-flow structure expressed in terms of a Petri net. 

(b) The organizational structure expressed in 
terms of an activity-role-performer diagram. 

John Sue Mike Carol Pete Clare 

role X role Y role Z 

John Sue 

Mike

CarolPete

Clare

(c) A sociogram based on transfer of work. 

Fig. 2. Some mining results from different perspectives

The (Pro)cess (M)ining framework ProM has been developed as a completely
plug-able environment for process mining and related topics. Currently, over
230 plug-ins have been added. For more information on process mining and the
ProM framework, we refer to [17,32] and the Website www.processmining.org.
A screenshot of ProM, showing results of analysis of our bookstore example from
different perspectives is shown in Fig. 3.

ProM uses a standard log format, named MXML as described in [15] for stor-
ing process logs, such as the one in Table 1. In the context of the ProMimport
framework [23], several adaptors have been developed to map logs from differ-
ent information systems onto MXML (e.g., Staffware, FLOWer, MS Exchange,
MQSeries, etc.).

In this paper, we show that we can use the ProM framework to analyze MSCs,
by adapting two mining plug-ins to use the explicit information about the rela-
tion between events contained in MSCs. However, before describing the neces-
sary changes to the α Miner and the Multi-phase Miner, we first introduce these
algorithms in some detail.

Table 1. An event log (audit trail)

Case id Activity id Originator Case id Activity id Originator
Case 1 Activity A John Case 5 Activity A Sue
Case 2 Activity A John Case 4 Activity C Carol
Case 3 Activity A Sue Case 1 Activity D Pete
Case 3 Activity B Carol Case 3 Activity C Sue
Case 1 Activity B Mike Case 3 Activity D Pete
Case 1 Activity C John Case 4 Activity B Sue
Case 2 Activity C Mike Case 5 Activity E Clare
Case 4 Activity A Sue Case 5 Activity D Clare
Case 2 Activity B John Case 4 Activity D Pete
Case 2 Activity D Pete

www.processmining.org
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3.1 The “α Miner”

The α-miner provides an implementation of one of the earliest mining algorithms
[3] and some extensions [8]. As mentioned in Sect. 1, most algorithms use an
abstraction step to abstract from the event log. The abstraction made by the
α-algorithm is the following. First, the event log is analyzed and for each pair
of activities, it is determined whether or not they succeed each other directly,
which is expressed by a > relation (e.g., if one case shows that activity A is
directly followed by activity B, then A > B).

Using the > relation, two more informative relations between activities are
determined, usually referred to as ordering relations :

– Activity B is considered to causally follow activity A (denoted by A→ B),
if and only if A > B and not B > A, i.e., in at least one case, activity A was
directly succeeded by activity B, but never the other way around,

– Activities A and B are considered to be in parallel (denoted by A‖B)if and
only if both A > B and B > A, i.e., activities A and B can occur in the same
case, directly succeeding each other, but the order in which they appear is
arbitrary,

In a final step, the α algorithm determines the places of a Petri net model,
solely based on the causal and parallel dependencies between activities.

3.2 The “Multi-phase Miner”

A slightly more advanced plug-in is the Multi-phase Miner. This plug-in imple-
ments a collection of algorithms [14, 16]. The first step of these algorithms is
similar to the first step of the α algorithm, i.e., first the > relation is built, after
which the causal dependencies between activities are determined (→ relation).

However, the causal dependencies between activities are not directly used to
construct a process model from an event log. Instead, these relations are used to
translate each case in the log into a partial order on its events, a so-called instance
graph [14]. By introducing this partial order on a case level, each individual case
now contains explicit information about parallelism and causality. Note that the
information about parallelism is not derived from the > relation.

In the final step of the multi-phase miner, the partially ordered cases or in-
stance graphs are aggregated into a single process model or aggregation graph,
for which translations are provided into EPCs and Petri nets.

In the next section, we provide the two different ways in which MSCs can be
added to algorithms presented in this section. We start with the latter algorithm,
as MSCs are closely related to the instance graphs used there.

3.3 Mining XML

The input language for ProM is called Mining XML (MXML) [23]. This is a
simple XML language that specifies a workflow log.

Although MXML may seem fixed it is possible to extend the language, as we
will see later, by extending the various data entities. These entities allow any
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information to be added that do not fit into the rest of the language, and are
basically just pairs of named strings.

4 Generating Process Models from MSCs

This section presents two approaches for aggregating a set of MSCs into a single
process model. We first present how we extended ProM such that it is capable of
importing MSCs, since we want to consider MSCs in the same way as event logs
are considered (i.e., as input for mining plug-ins). As the first step in process
mining often is to filter the log so that it shows only relevant information, we
provide the details on how to do that for partially ordered logs. Finally, we
present how the MSCs are used by the two plug-ins implementing the algorithms
mentioned before.

4.1 MSCs to Annotated MXML

For the conversion of any event log format to MXML, the ProMimport frame-
work has been developed. For our approach, we have chosen to use XML Meta-
data Interchange (XMI) [22], the Object Management Group (OMG) standard
interchange format, as our input format for MSCs, and to implement the trans-
lation in a plug-in for the ProMimport framework.

In this ProMimport plug-in, each MSC is translated into one case. The reason
for this is simple. Since each MSC describes one possible execution scenario of
the system, it corresponds to the notion of a case, which is also referred to as
process instance.

Within each MSC, all messages are translated into two events, or audit trail
entries ; one referring to the sending of the message and one referring to the
receiving of the message. To accomplish this, we make sure that both events refer
to the same activity (i.e., the message). The event that refers to the sending of the
message has event type start. Receiving audit trail entries have type complete.

To incorporate the information about agents in MXML, we use the originator
field of each event in a trivial way. If the agent Customer sends the message
place_c_order to the Bookstore agent, then the originator field of the event
relating to the sending of the message equals Customer and the originator field
of the event relating to the receiving of the message equals Bookstore. As men-
tioned before, we do not consider instances of the same agent type here, i.e.,
there is only one publisher agent and one bookstore agent. However, if necessary
(e.g., when applying social network analysis) each instance could uniquely be
identified.

Finally, we add data to each event, so that each event has a unique label
within a case. Using these labels, the partial order information is stored, by
providing the set of predecessors and successors of each event that we have
observed in the MSC. Consider for example the MSC of Fig. 1, where the first
three events are: (1) the sending of message place_c_order by Customer, (2)
the receiving of message place_c_order by Bookstore and (3) the sending of
message handle_c_order by Bookstore.
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The relations between events stored in the data part of MXML, are built in
a trivial way. If an event refers to the sending of a message, the preset of that
event is the event that happened before it on the lifeline of the corresponding
agent. If the event refers to the receiving of a message, the preset also contains
the event referring to the sending of the same message. The postsets are build
in a similar fashion.

Figure 4 shows a part of an annotated MXML file illustrating how MSCs are
stored. It contains a isPartialOrder flag for the process instance to denote
the fact that partial order information is present. Furthermore, it shows the
identifiers and pre- and postsets for the events.

4.2 Filtering a Partially Ordered Log

Through the annotated MXML format, the MSCs can be used directly in process
mining. However, our experience is that the first step in process mining is usually
to focus on a subset of the information in the log, i.e., by filtering the log,
for example by only considering the completion of activities, or the activities
executed by a specific person. For this purpose, ProM is equipped with log
filters.

Log filters typically remove events that are not of interest. If events are totally
ordered, then this is easy to do without disturbing the ordering between events.
In case of partially ordered events however, it is less trivial to remove events
without disturbing the ordering relation. In fact, events can only be removed if
the partial order is first transitively closed.

For this purpose, we implemented two log filters in ProM. The first one tran-
sitively closes the partial order. Then already existing filters can be applied and
afterwards our second plug-in transitively reduces the partial order1. In the ex-
amples presented in the remainder of this section, we use these filters in practice.

It is important to realize that the transitive reduction of an MSC is not the
MSC itself. For example, in Fig. 1, the path between the sending of message
place_c_order by Customer and the receiving of message c_reject by the
same agent is lost. However, in the remainder of this section, we show that this
is an advantage for the usability of existing mining algorithms.

4.3 MSCs in the Multi-phase Miner

In Sect. 4.1 we provided a way to import MSCs into ProM and in Sect. 4.2 we
provided a way to filter them as one usually would a linearly ordered event log.
In this section, we show how MSCs seamlessly integrate into the first of two
existing process discovery algorithms.

As stated in Sect. 3.2, the multi-phase miner implements a two-stage process.
On a linearly ordered event log, it first translates each case (or process instance)

1 The idea of transitive reduction is that an edge between two nodes in a graph is
removed if there is a different path from the source node to the target node. Since
partial orders are a-cyclic, the transitive reduction is unique [5].
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into a partial order. Such a partial order is called an instance graph and each in-
stance graph satisfies the following two requirements [14]:

Partial orders are minimal. The aggregation algorithm presented in [16] as-
sumes that the partial orders used as input are minimal, i.e., there are no
two paths between two nodes.

Input and output sets are uniquely labeled. The second requirement for
the aggregation algorithm is that no single event is preceded or succeeded
by two events with the same label twice.

The first of the two requirements is clearly not met by our MSCs, i.e., if
Customer sends message place_c_order to Bookstore and then gets message
c_reject back from Bookstore there are several paths between the event re-
ferring to the sending of message place_c_order and the event referring to the
receiving of message c_reject (see Fig. 1). The first path is the trivial path
directly from the sending place_c_order event to receiving c_reject event,
and the other paths are those which include the receive place_c_order event.
Therefore, it is necessary to transitively reduce each MSC, before applying the
aggregation algorithm. To transitively reduce the partial order, we make use of
the advanced filtering capabilities of ProM, which we discussed in Sect. 4.2. In
the left example MSC of Fig. 1, the result of reduction is simply the sequence
place_c_order, receive place_c_order, . . . , send c_reject, receive c_reject;
i.e., a single event occurrence path.

The second requirement is harder to satisfy. Consider Fig. 5, where the start
event of message order by Bookstore is followed by two complete events of
the same message, i.e., the one coming in from Customer and the one going
to Shipper. Note that this situation would not occur if message order is first
sent by Customer to Bookstore and then by Bookstore to Shipper, or if these
messages would be labelled differently, as is the case in our example, where they
are labelled place_c_order and place_b_order. Furthermore, our experience
has shown that such situation is unlikely to occur in practice and if it does, it
can be resolved by adding an internal message on the lifeline of Bookstore.

Fig. 4. A partially ordered MXML snap-
shot in ProM

Fig. 5. An MSC that leads to problems
in the aggregation
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place_c_order
complete

place_b_order
start

b_reject
complete

c_reject
start

req_shipment
start

s_accept
complete

b_accept
complete

p_accept
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notify
complete

pay
complete

s_reject
complete

c_accept
start

send_bill
start

Fig. 6. Petri net showing the external be-
haviour of the bookstore

place_c_order
start

c_reject
complete

c_accept
complete

ship
complete

send_bill
complete

pay
start

Fig. 7. The external behavior of the cus-
tomer

In a second step, the multi-phase miner takes a collection of instance graphs
(or transitively reduced MSCs) and aggregates them into a so-called aggregation
graph, which in turn can be translated into an EPC or Petri net. This procedure
is described in detail in [16]. In essence, an aggregation graph is a straightforward
sum over a set of partial orders, with two unique nodes ts and tf in such a way
that ts is the only source node and tf is the only sink node. The labels of nodes
and edges represent the number of times it was visited in some partial order.

Figure 6 shows the external behavior of the bookstore from our example, ob-
tained using the multi-phase miner. To obtain this result, we first projected
the MSCs onto the audit trail entries where bookstore is described in the
originator field, i.e., we focussed on the lifeline of bookstore. Furthermore,
we removed all internal messages, i.e., messages for which the sender equals the
receiver. The result is a Petri net, which shows the behavior of the bookstore
as defined in the MSCs. Note that, according to this Petri net, the bookstore
always finds a shipper, i.e., after sending the message req_shipment (transi-
tion req_shipmentstart), the message s_accept will eventually be received. This
might be true in real life, but this might also indicate that not all possible be-
havior has been captured in MSCs yet.

Finally, each of these aggregation graphs can be translated into an EPC,
i.e., into a human-readable format. This is where the requirements where the
MSCs are minimal and where the in- and output sets are uniquely labeled are
important, since the translation depends on the labels of nodes and edges. In
short, if a node has the same label as each of its input edges, it is an AND-join,
if a node has a label that equals the sum of the labels of all input edges it is an
XOR-join and otherwise an OR-join and symmetrically for the split type.2

2 If one of the two requirements of the input is violated, these translation rules may
not be valid and the result may contain too many OR connectors.
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Since the multi-phase miner already used partial orders internally, its ap-
plication to MSCs was a logical choice. However, when an aggregation graph
is translated to a Petri net, the result is often a model which allows for much
more behavior than seen in the log. This property has been explained in detail in
Sect. 6.6 of [13], where it is also shown that the resulting Petri net can reproduce
the partial orders given as input. Furthermore, in [13] is was also shown that an
EPC representation of a process is correct if the Petri net translation thereof is
relaxed sound, which is the case for the Petri nets generated by our approach,
when using the restriction process described in [16] to reduce the number of
invisible transitions.

Opposite to the multi-phase miner, the α-algorithm results in more restrictive
Petri nets, without “invisible” transitions, but the result might be too restrictive,
i.e., the resulting Petri net cannot reproduce the log. However, we still feel that
it is an important algorithm to be applied to MSCs.

4.4 The α-algorithm on Partial Orders

In Sect. 3.1, we stated that the α-algorithm first translates an event log into a set
of ordering relations before constructing a Petri net. Recall that these ordering
relations are traditionally based on the linear ordering of events in the log, i.e.,
the > relation mentioned before.

To extend the α-algorithm to work with partial orders, we simply redefine
the > relation. For two events A and B, we say it holds that A > B if there is
an edge between events A and B in the partial order. In other words, we say
that activities A and B could directly follow each other, if and only if there is
an edge between them in an MSC. Note that this indeed holds for all messages,
i.e., the sending of a message can directly be followed by the receiving of that
message. For the subsequent events on a lifeline however, this is not necessarily
the case, i.e., the sending of message place_c_order by Customer in the first
MSC in Fig. 1 is never directly followed by the receiving of message c_reject
by the same agent since other events occur in between. Therefore, in case of the
α-algorithm, it is also important to look at the transitive reduction of the MSC.

Figure 7 shows the external behavior of the customer from our example, ob-
tained using the α-algorithm. To obtain this result, we first projected the MSCs
onto the audit trail entries where customer is described in the originator field
and again, we removed all internal messages. The result is a Petri net, which
shows the behavior of the customer as defined in the MSCs. From a customer
perspective, this seems a desirable process, i.e., he places an order, after which
the order is rejected or accepted. If the order was accepted, a shipment is re-
ceived (containing the book) and a bill is sent afterwards. The process only ends
when the customer sends the payment.

4.5 Other Process Mining Techniques

In Fig. 2, we presented an overview of applying mining algorithms from different
perspectives. By enabling these techniques to be applied to MSCs, many useful
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insights can be gained into a process described by a collection of MSCs. Unfor-
tunately, we do not have the space to elaborate on all of them. Therefore, we
show a screenshot of the process mining framework ProM (see Fig. 3). The ProM
framework can be downloaded from www.processmining.org and can freely be
used (it is open source software). The reader is invited to experiment with the
plug-ins and many others reported in this paper and apply it to MSCs expressed
in the OMG’s XMI format.

5 Conclusions

This paper presented a new approach to synthesize a process model from MSCs.
The approach uses ideas from the process mining community and adapts these
to incorporate the explicit causal dependencies present in MSCs. The approach
has been fully implemented in ProM, by extending the MXML language with
the notion of partial orders, and developing an import plug-in to convert XMI
to MXML, and a partial order aggregator to generate the process models from
the MXML. See Fig. 3 for a screenshot of the application.

We showed how an existing process mining algorithm can be adapted to ex-
ploit causal dependencies and that the discovered model can be represented in
different notations, e.g., EPCs, Petri nets, BPEL, and YAWL. Moreover, the
ideas are not limited to MSCs and can be applied to other event logs containing
explicit causal dependencies, e.g., collaboration diagrams, groupware products,
document management systems, case handling systems, product data manage-
ment systems, etc.

The techniques introduced in this paper also applies to UML 2.0 Sequence
Charts, since the structured constructs such as parallel routing, iteration, choice,
etc., can initially be unfolded to the MSCs we use in this paper [28], and then
mined using the techniques we present in this paper. Although high-level features
may be interesting for specifying systems (and as [28] shows we are able to handle
these) our intention with this paper is to show how to support modelers that
use MSCs to model example scenarios. By providing a translation, we help them
make a move forward, from a collection of MSCs, to a single coherent model.
This model may eventually be developed into a specification of the system, or
it may simply be used to give a more intelligible behavior description than the
MSCs.
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Abstract. Process mining is increasingly used as an analysis technique
to support the understanding of processes in software engineering. Due to
the close relation to Petri nets as an underlying theory and representation
technique, it can especially add to Petri net-based approaches. However,
the complex analysis techniques are not straightforward to understand
and handle for software developers with little data mining background. In
this paper, we first discuss possibilities to integrate process mining into
our Petri net-based agent-oriented software engineering approach. As the
main contribution, we focus on enhancing its usability and introduce a
technique and tool for visually modeling process mining algorithms with
net components. These can be used to build new complex algorithms as
a patch-work of existing procedures and new compositions. Furthermore,
they allow for an easy integration with standard tools such as ProM.

Keywords: Petri nets, net components, process mining chains, modeling.

1 Introduction

Process mining is a subfield of data mining concerned with the reconstruction of
process models from log data [41]. During the last years, the scope of research has
been extended from mere business process analysis towards several areas related
to processes in general. An active research field is the application of process
mining to software engineering. Current approaches focus on analyzing software
development processes on the one hand [9, 31] and the behavior of complex
software artifacts such as Web services [12] or agents [5, 42] on the other hand.

Despite this progress, the applicability of process mining to software engi-
neering suffers from two problems. Firstly, it is not straightforward to feed the
information gathered through mining back into a conventional code-centric or
semi-formal software engineering approach. Secondly, the selection and appli-
cation of appropriate mining techniques is not trivial for the normal software
developer without a strong data mining background. This is due to the high
complexity and limited reliability of the techniques.

In this paper, we address the first problem by presenting software engineer-
ing based on reference nets as an appropriate foundation for the integration of
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process mining. On the one hand, Petri nets are a common means for result rep-
resentation in process mining. On the other hand, the reference net formalism
and the agent-oriented structure provided by the related Mulan [30] architec-
ture allow to build large executable software systems based on Petri nets. Process
mining techniques can be applied to aid the modeling, debugging, and validation
of these systems. Furthermore, they can be integrated into the Petri net-based
software agents to improve their adaptability.

As the main contribution of this paper, we address the second problem by pre-
senting net components for the Petri net-based modeling of the process mining
techniques themselves, which enhances their re-usability, validation, and docu-
mentation. Our specific mining components receive data from different sources
of the development environment, process it, and transfer the resulting data to
the next component or to sinks allowing for a feedback into the observed system.
Several types of mining components can be assembled to so-called process mining
chains.1 Mining components can be implemented as Java Code or as sub-nets.
The former allows to re-use algorithms implemented in standard tools such as
WEKA [15] or ProM [43].

While the modeling of process mining chains fits the context of Petri net-
based software engineering very well, the approach is not limited to this domain.
Since there are no restrictions on the applied algorithms and on the processed
data, the proposed modeling technique can also be used in further applications
of process mining or other data intensive domains such as image processing.

The paper is organized as follows: In Sect. 2 we review related work on process
mining in software engineering and on the explicit modeling of mining proce-
dures. In Sect. 3 we discuss possibilities and requirements for the integration
of process mining into the Petri net-based, agent-oriented software engineering
life-cycle. We then introduce reference nets, net components, and the Mulan

framework as an appropriate basis in Sect. 4. Section 5 focuses on the modeling
of process mining procedures by a set of generic as well as specialized net com-
ponents. Furthermore, it is shown how plugins of the process mining tool ProM
can be integrated into our framework. Finally we present an example application
of the mining components to the reconstruction of agent interaction protocols
from message logs. Section 6 concludes the paper and provides an outlook to-
wards future prospects of the presented techniques and tools.

2 Related Work

Process mining has already been applied to software engineering several times. One
direction of research focuses on the analysis of software development
processes (which we will call software development process mining). The goal is
to retrieve control-flow and organizational aspects of software development cycles
1 To be more precise we should talk about mining processes instead of mining chains.

However, this would lead to the confusing term process mining processes. Also for
historic reasons we stick to the term mining chain, which other authors use as well
(see e.g. the implementation of the Process Mining Workbench described in [32]).
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from available data sources such as CVS repositories. In contrast, the second direc-
tion of research uses mining to analyze software artifacts in order to support tasks
like debugging or validation (which we will call software process mining)2.

Early work on software development process mining was carried out by Cook
and Wolf [9], who reconstruct models of software development processes from
event-based logs and use conformance checking techniques to compare actual
development activities with specified process models. They also present a tool
implementing their techniques within a software development environment.
Christley and Madey [8] apply social network mining and grammar inference
to the analysis of open source projects. Rubin et al. [31] introduce a general
framework for process mining of software development processes. They consider
several aspects including specific data sources, algorithms, and perspectives, and
propose the ProM framework [43] as a supporting toolset.

Software process mining is concerned with the reconstruction of abstract mod-
els of software systems from their execution traces. Dustdar and Gombotz [12]
present techniques for the analysis of operational, interaction-, and workflow-
related aspects of Web-service behavior. Dallmeyer et al. [11] apply grammar
inference to the state-based analysis of basic software objects in order to sup-
port testing. Dongen et al. [42] present a case example of process mining in
agent-based simulation and propose to build adaptive Petri net agents. Szirbik
and colleagues build adaptive Petri net agents with neural networks and propose
process mining as an alternative [27, 35].

In our own previous work [5], we have embedded techniques for the recon-
struction of interaction protocol models into our Petri net-based agent platform
Mulan/Capa [13]. We have also described a conceptual framework for process
mining in agent-oriented software engineering and simulation in [4, 21]. To our
impression, two aspects have not received enough attention in the literature so
far. The first is a unified view including all variants of process mining in software
engineering. The second is the seamless integration of process mining into actual
software development frameworks or environments.

An integration of process mining into software engineering should also consider
techniques to improve the handling of mining algorithms for software develop-
ers. Knowledge discovery processes are often complex and exhibit a module-like
structure where several processing stages (selection, preprocessing, transforma-
tion, mining, visualization, and interpretation, [22, p.54]) are consecutively or
concurrently applied to the input data. This structure is well expressed using
notations for data flow networks. Semi-formal data flow notations are also occa-
sionally used in process mining to visualize mining procedures on a conceptual
level [32, p.166], [33, p.99], but not for their implementation and execution.

Several existing data analysis environments allow for the visual composition
of data processing algorithms from existing and user-defined components in
order to support re-use, debugging, and documentation. Examples include the
scientific computing environment Simulink [26], the image processing system
VisiQuest [1], the data mining tool WEKA [15] together with the modeling

2 In contrast, Rubin et al. [31] use this term for the mining of development processes.
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environment Alpha Miner developed at Hong Kong University [14], and the
Konstanz Information Miner (KNIME) plugin for the Eclipse platform [6].

Though these tools offer good usability and mature graphical interfaces, they
also have different drawbacks. Some of the tools are not easily extensible. Though
most tools are capable of offline analyses (i.e., the complete data set is analyzed
‘in one go’), online analyses (i.e., analyses performed during the continuous
streaming of data items into the network) are seldom supported. Another prob-
lem is the concurrent execution of processing steps.

The Java-based ProM framework [43] is widely used in process mining due
to its good extensibility and large set of available plugins. Interoperability is
ensured by a large number of supported input and output formats. Though the
plugin architecture of ProM resembles the idea of a processing chain with data
acquisition, mining, conversion, analysis, and visualization steps, the current
user interface is merely tailored towards an interactive application.

3 Process Mining in Software Engineering

The literature review shows that process mining can add to several stages of a
software engineering life cycle. Figure 1 shows a selection of possible applications
of process mining in the context of software development from the early to the
late stages. The presented development cycle is very generic and borrows the
software engineering disciplines from the Rational Unified Process [18].

In the context of Petri net-based software engineering, specific advantages
become apparent: In the design phase process mining supports the understanding
of a real system’s structure and behavior. Process models mined from the real
system form a straightforward basis for the (semi-)automated implementation of
the Petri net-based software. In debugging, process mining adds valuable support
when applied to large traces of a running system. In validation and testing, traces
observed from the running software (or abstract Petri net models reconstructed
from these traces) can (semi-)automatically be compared with the specification
by means of conformance analysis techniques [39]. During the operation of the
software system, process mining is suitable to support the monitoring and online
optimization, which requires the mined Petri nets to be fed back into the running
system.

In an agent-based context (as provided by our Mulan architecture) further
integration of process mining stands to reason: Software agents can achieve a
form of adaptability by inferring behavioral information from watching other
agents act. Thus, they are able to construct a model of the behavioral patterns
that are usual or useful in the system’s environment. Furthermore, the use of
the multi-agent system metaphor as a common abstraction for the software as
well as for the development team [2] and process allows to handle the mining of
constructed processes and the mining of software development processes within
the same conceptual framework.

The broad applicability of process mining to software engineering is due to the
genericness of the techniques, which can be applied to several types of log data
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Fig. 1. Overview of process mining activities in software development processes

(for a related discussion in the context of change mining [16]). On the one hand,
this includes traces of operational software systems, where the focus is either
put on the behavior of single software components or on interactions including
multiple objects or agents [12]. On the other hand, process mining techniques can
be applied to data recorded during the execution of real world processes to gain
information about the processes supported by the software under development
as well as about the development process.

Especially for distributed systems process mining can add valuable informa-
tion for debugging and monitoring. However, software developers have to be able
to apply the techniques easily without much overhead during the development
phases, and the techniques have to be tightly integrated in the usual workflows
and tools. In our work we propose to apply process mining techniques through
a component-based approach that allows the developer to construct complex
mining algorithms by joining components together to form a data-flow network.

4 Reference Nets, Net Components and Mulan

Nets-within-nets [38] are expressive high-level Petri nets that allow nets to be
nested within nets in dynamic structures. In contrast to ordinary nets, where
tokens are passive elements, tokens in nets-within-nets are active elements, i.e.,
Petri nets. This can be regarded as token refinement. In general we distinguish
between two different kinds of token semantics: value semantics and reference
semantics. In value semantics tokens can be seen as direct representations of
nets. This allows for nested nets that are structured in a hierarchical order
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because nets can only be located at one location. In reference semantics arbitrary
structures of net-nesting can be achieved because tokens represent references to
nets. These structures can be hierarchical, acyclic or even cyclic.

4.1 Reference Nets, Net Instances and Synchronous Channels

Reference nets [24] are an object-oriented nets-within-nets formalism with ref-
erential token semantics. In a single nesting of nets, we can distinguish between
system net and object net. A token in the system net refers to an object net. Nat-
urally, object nets can contain net tokens, and thus a system of nested nets can
be obtained. The benefit of this feature is that the modeled system is modular
and dynamically extensible. Furthermore, through synchronous channels [7,23],
transitions can activate and trigger the firing of transitions in other nets, just
like method calls of objects.

The Petri net simulator and IDE Renew (The Reference Net Workshop [25])
combines the nets-within-nets paradigm of reference nets with the implementing
power of Java. Tokens can be net instances, Java-objects or basic data types.

In comparison to the net elements of P/T-nets, reference nets offer several
additional elements that increase the modeling power as well as the convenience
of modeling. These additional elements include several arc types,3 virtual places
and several inscription types providing functionality for the net elements. Tran-
sitions can be augmented with expressions, actions, guards, synchronous chan-
nels and creation inscriptions while places may own type, creation and token
inscriptions.

Similar to objects in object-oriented programming languages, where objects
are instantiations of classes, net instances are instantiations of net templates.
Net templates define the structure and behavior of nets just like classes define
the structure and methods of objects. While the net instance has a marking that
determines its status, the net template determines only the behavior and initial
marking that is common to all net instances of one type.

In reference nets, tokens can be anonymous, basic data types, Java objects or
net references. New net instances can be created within executing net instances
similar to object creation during program execution.

For the communication between net instances, synchronous channels are used.
A synchronous channel consists of two (or more) inscribed transitions. There are
two types of transition inscriptions for the two ends of the synchronous channel:
downlinks and uplinks. Two transitions that form a synchronous channel can
only fire simultaneously and only if both transitions are activated. Downlink
and uplink can belong to a single net or to different nets. In both cases any
object, also another net instance, can be transferred from either transition to
the other by binding them to the parameters of the synchronous channel. If two
different net instances are involved, it is thus possible to synchronize these two
nets and to transfer objects in either direction through the synchronous channel.
For this the system net must hold the reference of the object net as token.
3 For example, Renew offers test arcs, reserve arcs and flexible arcs. Flexible arcs are

used in the example (compare Fig. 6) to gather elements from a list.
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While net instance creation allows for a dynamically refinable structure of
the net system through token refinement, synchronous channels allow for the
communication (dynamic synchronization) between net instances, which form
the different parts of the net system. Net instances and synchronous channels
are also facilitated by some of the presented net components in Section 5 to
allow for complex (refined) mining algorithms.

4.2 Net Components

A net component [3] is a set of net elements that fulfills one basic task. The task
should be so general that the net component can be applied to a broad variety
of nets. Furthermore, the net component can provide additional help, such as a
default inscription or comments.

Every net component has a unique geometrical form and orientation that re-
sults from the arrangement of the net elements. A unique form is intended so that
each net component can easily be identified and distinguished from the others.
The geometrical figure also holds the potential to provide a defined structure for
the Petri net. The unique form can be accompanied by a distinctive color choice
as it has been done with the net components for process mining in Sect. 5.

Net components are transition-bordered subnets that can be composed to
form a larger Petri net. To ease the practical use each output transition is sup-
plemented with appropriate output places. Thus, the net components can be
connected just by drawing arcs between such an additional output place and an
input transition of another net component.

Jensen [19] describes several design rules for Petri net elements, which are
based on previous work by Oberquelle [29]. These rules are concerned with the
ways of drawing figures and give general advice for Petri net elements such as
places, transitions and arcs. They are also concerned about combinations and
arrangement of the elements.

Net components extend the rules by giving developer groups the chance to
pre-define reusable structures. Within the group of developers, these structures
are fixed and well known, although they are open for improvements. Conventions
for the design of the code can be introduced into the development process, and
for developers it is easy to apply these conventions through the net component-
based construction. Furthermore, the developing process is facilitated and the
style of the resulting nets is unified. Once a concrete implementation of net com-
ponents has been incorporated and accepted by the developers, their arrange-
ments (form) will be recognized as conventional symbols. This makes it easier
to read a Petri net that is constructed with these net components. Moreover,
to understand a net component-based net it is not necessary to read all its net
elements. It is sufficient to read the substructures. Net components are used
extensively and successfully for the construction of Mulan protocol nets.

4.3 Multi Agent Nets (Mulan)

Mulan [30] is a multi-agent system architecture modeled in terms of reference
nets. It consists of four levels, i.e., protocols, agents, platforms, and multi-agent
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Fig. 2. The Mulan multi-agent system architecture (adapted from [30])

system infrastructure, which are related through token refinement. An agent is
represented by a net that (among other aspects) provides an interface to ex-
change messages with its environment. The agent’s range of behavior is modeled
by means of workflow-like protocol nets. Depending on its knowledge an agent
can instantiate a protocol net actively or reactively to perform certain tasks.
Multiple agents inhabit a platform and multiple platforms can be composed in a
multi-agent system infrastructure. The platforms provide internal and external
(platform spanning) communication services for the agents (Fig. 2).

Capa [13] is a FIPA-compliant implementation of the Mulan architecture
based on Renew. In the context of Mulan/Capa some additional tools are
provided through several plugins that extend the functionality of Renew and
Capa. Some examples are the net components plugin and the Mulan compo-
nents for protocol nets, the Mulan viewer, which allows to introspect the nets
belonging to an agent, and the Mulan sniffer,4 which is a message monitoring
tool originally inspired by the JADE agent platform’s Sniffer tool [37].

5 Net Components for Mining Chains

As part of our attempt to integrate process mining into our Petri net-based
software engineering approach, we have developed a set of net components (see
Sect. 4.2) to visually model process mining chains and integrate them with other
parts of the software. One application is agent interaction analysis [5], where the
mining chains process message logs observed during the execution of our multi-
agent applications. This data has to be provided to the mining chain and the
reconstructed protocol models have to be returned to the environment.

5.1 Generic Mining Components

Thus, the tasks to be supported are data acquisition, data processing, and feed-
back of the results into the software development or even into the running sys-
tem. We have therefore identified sources, processors, and sinks as basic (generic)

4 The implementation was done by Frank Heitmann and Florian Plähn.
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components for mining chains.5 Figure 3 shows the generic mining components
that can be used as templates to create specific ones. These net components
are rather simple consisting of one place and one transition. The place holds a
Java object that provides the respective data processing algorithm via a stan-
dardized method. The transition calls this method when a data token enters the
net component. There might be an additional place and transition pair to pass
parameters to the component. While processors should be implemented with-
out side-effects, sinks and sources are explicitly introduced to interact with the
surrounding software environment.

The processing method can be implemented to perform either an online or an
offline analysis (see Sect. 2). In an offline analysis, one incoming token represents a
whole data set (e.g. a log in process mining) that is processed at once. In an online
analysis, each token represents one data element (e.g. an event in process mining)
in a continuing input stream. The processingmethod is called on each token arrival
to incrementally update the computed results based on the new data.

The reference semantics of the mining components differs from the value se-
mantics of classical Petri net-based data flow notations [20, pp.242]. This can be
an advantage but also a problem. On the one hand, it is possible to pass a reference
to an object (or even to a net instance) along a chain that successively changes the
object’s attributes in different processing stages. On the other hand, the concur-
rent modification of a referenced object in different processing stages can lead to
problems like race conditions. Nevertheless, the use of Java as an implementation
allows to clone processed objects in order to provide independent copies.

A mining chain is composed of several net components and can also include
sub-chains in a hierarchy of net instances. Also normal net elements can be used

5 These component types are also common in other data-flow modeling tools like e.g.
KNIME [6].
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to add custom behavior. Thanks to the use of the Petri net representation, we are
able not only to implement pure sequential chains. We can also model chains that
own a complex control-flow including concurrency. Mining chains can in principle
be implemented in any hierarchical colored Petri net formalism. However, the
object-oriented structure and the Java-based inscription language provided by
reference nets are especially well-suited to model large mining chains.

Hierarchical mining chains are realized by means of so-called complex sinks,
sources, and processors. Here, the object providing the processing functionality
is not a simple Java object but an instance of a sub-net. This instance receives
and provides data from and to the surrounding net component via synchronous
channels (see Sect. 4.1). Thereby it is possible to encapsulate a whole Petri net-
based simulation model into a complex data source.

The generic as well as the interaction mining components are integrated in
Renew by a plugin (extending the net component plugin), which makes them
available to the modeler as palettes of tool buttons. The user can easily build
custom palettes with new mining components and use the generic components
as templates.

5.2 Integration with ProM

As discussed in Sect. 2, ProM is a powerful Java-based process mining tool
with an open plugin architecture similar to the one of Renew. The algorithms
implemented in ProM are used interactively on imported log data or process
models via a GUI. Due to the simple Java interface provided by the mining
components, an integration of both tools appears straightforward. In doing so,
we can on the one hand offer Petri net-based data-flow modeling for ProM. On
the other hand, we can comfortably integrate a large number of existing process
mining and analysis algorithms into our Petri net-based software.

The ProM architecture distinguishes between import, export, mining, analy-
sis, and conversion plugins. Mining result objects furthermore carry information
on their visual representation (e.g. as a Petri net graph) that can be visualized
by the GUI. We have straightforwardly mapped import plugins to source com-
ponents and export plugins and viewers to sink components. Mining, analysis,
and conversion plugins are specific kinds of processors. Based on the ProM ar-
chitecture two additional component types were identified: Filters restrict the
log to certain event types, and interactive viewers allow for user interactions
during the mining process. The latter are implemented with the aid of so-called
manual transition that the user fires after finishing the interaction.

Since ProM offers interfaces for each plugin type, it is not even necessary
to provide an own wrapper for each algorithm. Instead, we can provide generic
wrappers and pass the concrete plugin class as a parameter.

5.3 A Mining Chain for Agent Interaction Analysis

The following example shows how process mining chains can be integrated into
the agent platform Capa (see Sect. 4.3) to support the reconstruction of agent in-
teraction protocols from message logs. Such interaction mining provides valuable
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Fig. 4. Example process mining chain for agent interaction mining

hints when debugging multi-agent applications and forms a basis for autonomous
protocol learning by Petri net agents [35, 42].

In [5] we have presented an interaction mining procedure that integrates and
extends previous attempts from the literature [28, 33]. The procedure consists
of 6 subsequent steps, i.e., log segmentation, role detection, control-flow mining,
peer generation, model enrichment, and visualization.

Figure 4 shows the implementation of the first three steps by means of mining
components. Each step is represented by a complex processor and refined by a
sub-net. The sub-nets for the log segmentation and control flow mining steps are
depicted in Figs. 5 and 6. Furthermore, there are source and sink components
that help to embed the mining chain into the agent platform.

The processing starts from the Sniffer Message Source component that pro-
vides a message log recorded by the Mulan Sniffer. The example log was
recorded during the execution of an iterated mediation protocol on the Capa

agent platform. At the end of the processing chain, the Renew Petri Net Viewer
sink exports Petri net representations of the reconstructed interaction protocols
to Renew as new net drawings6 that can be instantiated and executed.

6 The graphical representation of the resulting model in Renew is manually beautified.
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Fig. 5. A sub-chain implementing the segmentation step

Each step of the mining chain is implemented by means of several existing
and new ProM plugins wrapped as mining components. The Log Segmentation
processor depicted in Fig. 5 starts by chaining messages [39] that were sent in
reply to each other into conversations. Afterwards two filters are applied that
add artificial start and end events to each conversation in the log.7

Next, the Clustering component clusters the conversations in the log into pro-
tocol classes based on similar follower relations of message types (performatives).
ProM includes several plugins supporting this task. The results are displayed us-
ing the Log Reader Viewer while the net execution waits on a manual transition.
In the example, this interactive viewer lets the user select a certain protocol class
for further investigation. After selecting the protocol, the manual transition is
fired by the user to continue the processing. At the end of the log segmentation, a
Process Filter restricts the log to those conversations that belong to the selected
protocol.

The pre-processed log is forwarded to the Role Mining procedure. This step
uses ProM’s existing organizational miner plugin to induce the participating
agents’ roles from the sets of message types they send (as also proposed in [44]).
The corresponding subnet is not shown here. It enriches the log with role in-
formation and forwards the enriched log to the Control-Flow Mining processor
shown in Fig. 6.

7 This enhances the mining results and will not be explained in detail here.
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Fig. 6. A sub-chain implementing the control-flow mining step with an integrated
optimization procedure

This step illustrates how mining components can be combined with custom
net structures and Java code to build a simple optimization procedure. It also
provides an example of a non linear mining chain containing cycles.

In process mining, a large number of algorithms exists for the reconstruction of
control-flow, often tailored towards certain types of data. The well-known α++ [45]
algorithm e.g. performs well on noise-free, event-based data. Other algorithms are
specialized on handling circumstances like duplicate activities or noise.

Let us assume that the most appropriate algorithm for the given event log is
unknown in advance. We therefore employ the generic mining component and
pass a list of algorithms8 as parameters that are applied to the same log in
turn. While in the example, the algorithms are represented by Java objects,
they could also be represented by net instances that receive and provide data
via synchronous channels (see Sect. 4.1).

Subsequent to the mining we use ProM’s conformance checking plugin and
a custom maximizer component to identify the mining result that represents

8 In the example, this includes the α++ algorithm and a two-step approach tailored
towards models with duplicate activities. The latter algorithm is based on ideas
from [17,33] and presented in detail in [5]. For a related approach see also [40].
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the samples in the log ‘best’ in terms of behavioral appropriateness.9 The best
result is finally returned to the main mining chain. A similar optimizer could be
integrated into an adaptive agent in order to increase the reliability of existing
process mining techniques for autonomous learning.

Summarizing, the example indicates that the mining components might in-
deed be a step towards tackling the two problems of integrating process mining
and software engineering mentioned in Sect. 1. Concerning the first problem,
the presented source and sink components provide a well-defined interface be-
tween the software development and execution environment (i.e., Renew and
Capa) and the process mining algorithms of ProM. This allows to obtain data
from and feed back results into the system. Since the mined protocols are repre-
sented as executable reference nets, they can be immediately integrated into
the running Petri net simulation. In practice, the available algorithms have
to be enhanced to permit the automated protocol reconstruction by adaptive
agents.

Concerning the second problem, it is shown that the mining components sup-
port the creation of complex mining procedures by means of stepwise refinement.
Compared to other data flow environments, the approach provides a number of ad-
vantages indicated in the example: (1) in the context of Petri net-based software
engineering with Renew, the same formalism is used to model the mining pro-
cedures and the analyzed software; (2) pre-defined components can be combined
with custom Java code and net elements (e.g. to build the optimization procedure
shown in Fig. 6); (3) this procedure also shows that unlike conventional hierarchi-
cal notations, reference nets allow to dynamically exchange the applied algorithms
at runtime (e.g. depending on the provided data); (4) user interactions are simply
included by means of manual transitions as shown in Fig. 5.

6 Conclusion and Future Work

In this paper we have discussed modeling-related aspects of the integration of
process mining and software engineering. We have reviewed and summarized
possible advantages of this integration and discussed the benefits of a Petri net-
based approach in this context. The need to ease the handling of complex process
mining algorithms and seamlessly integrate them into the development environ-
ment has been pointed out. Furthermore, we have identified data-flow networks
as a common means to model data processing procedures and proposed their use
for process mining in Petri net-based software engineering.

Reference nets allow to model hierarchical process mining chains as nets-
within-nets. Even the processed data objects can be net instances, which suits
the representation of process mining results well. Net components are a handy
aid to include re-usable mining procedures in a conventionalized manner, pro-
vided through a toolbar of the Net Component Plugin of Renew. This

9 Of course in practice one should strive for better optimization methods than the
presented brute-force approach.
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technique allows for rapid prototyping, testing, refactoring and debugging of
mining chains.

In a multi-agent environment such as Mulan — which is implemented in ref-
erence nets — mining chains can be executed and even composed autonomously
by Mulan agents as protocols. This could lead to adaptive behavior of agents
in the future. The mining components can also be straightforwardly used as
wrappers for process mining plugins from the well-known interactive ProM tool.
Thereby, complex process mining procedures can be set up, and a large number
of available algorithms can be integrated into Petri net-based applications. We
have presented a chain for agent interaction mining as an example.

In our future work we will strive to increase the usability of process min-
ing in software engineering and validate our approach in larger case-studies of
AOSE with Renew and Mulan. Software developers will only accept process
mining, if they are provided with appropriate supporting tools and techniques.
While mining chains are a starting point, we can imagine several further
improvements.

Mining components could e.g. be enriched with attributes that aid the se-
lection of appropriate mining algorithms for specific situations (e.g. processing
speed versus precision). Such attributes could either be presented to the user
via the GUI or — given an appropriate formal representation — employed for
automatic consistency checks. One might e.g. check if an algorithm applied on
data provided by a certain source is really appropriate for the expected type of
data.

A further objective is to enhance the integration of process mining with in-
teractive software development environments. In our research groups, an OSGi-
compliant10 re-implementation of Renew was prototypically integrated with
a simulation environment based on the Eclipse platform11 (see [10, 34]). This
allows to utilize the mining components for the analysis of data retrieved
from simulation experiments or other sources of the Eclipse development
environment.

Another idea is to apply process mining to users’ interactions with ProM
itself. As a result, mining chains can be created from typical interactions and the
user can be provided with hints for the application of algorithms based on past
experiences. This technique is called meta mining in [36]. ProM already logs user
interactions in the MXML format. For meta mining these should be enriched
with further information like parameter settings of algorithm invocations.

Acknowledgments

We thank our colleagues, especially Dr. Daniel Moldt, for their comments and
fruitful discussions as well as the anonymous reviewers, who have given us
good and constructive suggestions to improve this work in their extensive
comments.
10 Open Services Gateway Initiative (http://www.osgi.org).
11 Eclipse is a popular IDE that facilitates OSGi (http://www.eclipse.org).



Net Components for the Integration of Process Mining 101

References

1. Acusoft. VisiQuest, Image Processing / Visual Programming Environment (2007),
http://www.accusoft.com/products/visiquest/features.asp

2. Cabac, L.: Multi-agent system: a guiding metaphor for the organization of software
development projects. In: Petta, P., Müller, J.P., Klusch, M., Georgeff, M. (eds.)
MATES 2007. LNCS, vol. 4687, pp. 1–12. Springer, Heidelberg (2007)

3. Cabac, L., Duvigneau, M., Rölke, H.: Net components revisited. In: Moldt, D.
(ed.) Proceedings of the Fourth International Workshop on Modelling of Objects,
Components, and Agents. MOCA 2006, number FBI-HH-B-272/06 in Reports of
the Department of Informatics, Vogt-Kölln Str. 30, 22527, Hamburg, Germany,
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Abstract. We propose an extension of Recursive Petri Nets (TRPNs)
based on the semantics of the Time Petri Nets (TPNs). TRPNs are
well suited for analyzing and modeling timing requirements of complex
discrete event system and allow to represent a model at different levels
of abstraction. We give a formal semantics of this extended model and
show that TRPNs are more expressive than TPNs. Moreover, we propose
a method for building a specific state class graph that can be used to
analyze timing properties efficiently.

Keywords: recursive Petri net, time Petri net, threads, recursivity.

1 Introduction

The introduction of modularity concepts in system specification is a wide re-
search array since it eases the handling of large descriptions. Therefore, several
popular models were extended, including the well-known Petri nets (PN). Hier-
archy in nets makes levels of refinement and abstraction possible. Further, object
Petri nets or object systems where a Petri net structure can contain Petri nets as
its tokens introduce more dynamical forms of hierarchy to model processes [11].
It is now possible to use high level specification models including procedure calls,
and translate it in specific Petri nets in order to be analyzed [10]. Very recently,
Recursive Petri Nets (RPNs) are proposed as an alternative model to specify
huge systems having dynamic structures, optionally infinite [7, 8]. They encom-
pass the capability to model procedures since they allow to emulate dynamic
creations and deaths of threads in a quite natural way. Threads in RPNs are
initiated by some new kind of transitions called abstract transitions. When a
thread fires an abstract transition, it consumes input tokens like an ordinary
transition, and creates a new thread in addition. This latter begins its token
game with a marking (which is called the starting marking of the abstract tran-
sition). The production of output tokens of the transition is delayed until the new
running thread terminates (which is called a cut step of the abstract transition).
RPNs have been successfully used for specifying plans of agents in a multi-agent
system [9], including complex mechanisms like interruption, fault-tolerance and
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remote procedures calls. Moreover, decision procedures for some fundamental
properties have been developed. In particular, the reachability, boundedness and
finiteness problems remain decidable.

We propose to extend RPNs with time specification to allow the analysis of
timing requirements of complex discrete event systems. There are two main ex-
tensions of PNs with time: time Petri nets (TPNs) and timed Petri Nets. It is
well known that for original TPNs, a transition can fire within a time interval
whereas for original timed Petri nets it has a duration and fires as soon as pos-
sible or with respect to a scheduling policy. During these last years, different
flavors were proposed to improve the expressivity or the concision of these mod-
els and important efforts were produced to compare them. The TPN model, said
”a la Merlin” with time intervals, strong (natural) timing semantics and mono-
server approach for transitions seemed very interesting since more expressive
than Timed models [5] and also exponentially more concise than its related tim-
ing semantical model, based on timed automata [2]. It is worth noting that, at
the price of more intricate managements concerning timing information, a better
expressivity has been demonstrated, first by allowing general time intervals and
second by pushing timing information on places and, above all, on arcs [3, 4].
However, the extended models suffer from a lack of analysis tools. In contrast,
TPNs (more precisely, transition-TPNs) have been widely and successfully used
for the modeling and the verification of systems, since they offer a good com-
promise between temporal expressivity and verification tools availability (see [1]
and [6] for instance).

For sake of simplicity, in this paper we will follow the original transition-TPN
ideas to introduce time in our model, namely Time Recursive PN (TRPN).
Actually, the above extensions would not re-open the results and originality of
our approach. In contrast to TPN, a firing in a TRPN may correspond either
to a transition or a cut step. So, to obtain a convenient model, we propose to
attach time intervals not only to ordinary and abstract transitions but also to
the cut step specifications. According to some execution in a marked TRPN, the
time interval [at, bt] of a transition or a cut step t represents possible firing times,
referring to the moment at which t was lastly enabled. If this reference occurs at
time θ, then t cannot be fired before θ + at and must be fired before or at time
θ + bt, unless it is disabled before its firing by the firing of another transition.
Note that the same component description can be used (or called in a recursive
manner) with different execution contexts and timing conditions. Thus it will be
possible to control, in an elegant manner, both starting and ending times and
durations of the threads by using TRPNs.

The next section recalls the bases of the RPN model and its state graph
representation. In Sect. 3, after an intuitive presentation, we formally define the
time semantics of TRPNs. The expressive powers of TRPNs and TPNs are then
compared. We show how to build a state class graph for a TRPN in Sect. 4.
Moreover, we demonstrate a sufficient condition to state that a TRPN is finite
in Sect. 5. Section 6 is our conclusion and perspectives.
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2 Recursive Petri Nets

In an ordinary PN, a single thread plays the token game by firing some transition
and updating the current marking. In a RPN, there is a tree of threads and each
thread has its own token game running independently on the net. As far as
interleaving semantics is concerned, a step of a RPN is a step of one of its
threads. In a RPN, the transitions are split in two categories: elementary and
abstract transitions. When a thread fires an abstract transition, it consumes the
tokens specified by the backward incidence matrix. This creates a new thread
(called its son) which can begin its own token game, from a starting marking
whose value is attached to the abstract transition. An indexed family of sets of
final markings called termination sets are attached to the net and the indices are
used to refer to them. When a thread reaches a final marking, it may terminate
aborting its whole descent of threads. This operation, called a cut step, allows
to complete the firing of the abstract transition which gave birth to it within
the father-thread. Contrary to ordinary PNs, only some of the output arcs are
used to produce tokens, those labeled by the index of the termination set which
contains the reached final marking. So, different final markings can produce
different results from the same abstract transition firing. Observe that the root
thread can also reach a final marking, yielding an empty tree.

When a thread fires an elementary transition, the behavior is twofold since
some abstract transitions can be under an explicit control of the elementary
transition (preemption). On one hand, the thread consumes and produces tokens
through the elementary transition, as usual. On the other hand, it prunes its
descendants initiated by the abstract transitions to be preempted, and produces
their corresponding output tokens. Here again, some (possibly additive) indices
are used to specify which output arcs are used.

The next definitions formalize the model of RPNs and its associated states
called extended markings. For sake of clarity, some concepts like test arcs and
the parameterized initiation of threads are not presented (please, refer to [8] for
more details).

Definition 1. A RPN is defined by a tuple R = 〈P, T, I, W−, W+, Ω, Υ, K〉
where:

1. P is a finite set of places,
2. T is a finite set of transitions such that P ∩ T = ∅. A transition of T can be

either elementary or abstract. The sets of elementary and abstract transitions
are respectively denoted by Tel and Tab,

3. I = IC ∪ IP is a finite set of indices, globally called termination indices, and
dedicated to cut steps and preemptions respectively,

4. W− is the pre function from P × T to N,
5. W+ is the post function from P × [Tel ∪ (Tab × I)] to N,
6. Ω is the starting marking function from Tab to NP which associates with

each abstract transition an ordinary marking (i.e. an element of NP ),
7. Υ is a family indexed by IC of termination sets, Each set represents a set of

final markings (i.e. elements of NP ),
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Fig. 1. A simple Recursive Petri Net and two firing sequences

8. K is a partial control function from Tel × Tab to IP which allows to specify
the thread preemption operations controlled by the elementary transitions.

Let’s use the net presented in the upper part of Fig. 1 to highlight RPN’s
graphical symbols and associated notations:

1. An abstract transition is represented by a double border rectangle; its name
is followed by the starting marking Ω(t), denoted like a multi-set of places put
inside brackets. For instance, t2 is an abstract transition and Ω(t2) = (P7)
means that any thread which is created by the firing of t2 starts with one
token put in the place P7.

2. Any termination set can be defined concisely based on place marking condi-
tions. A termination set indexed by i is denoted Υi. For instance, Υ1 specifies
the final markings of threads such that the place P9 is marked.

3. An elementary transition t is represented by a simple bar and its name is
possibly followed by a set of terms t′〈i′〉 ∈ Tab × IP . Each term specifies
an abstract transition t′ which is under the control of t, associated with a
termination index to be used when aborting t′ consequently to a firing of
t (i.e. K(t, t′) is defined and i′ = K(t, t′)). Here, t1 is such that its firings
preempt threads started by the firings of t2 and the referred termination
index is 0.

4. The set I of termination indices is deduced from the indices used to subscript
the termination sets (hence, the cut steps) and from the indices bound to
elementary transitions (related to preemptions). Here, we have I = {0, 1},
more precisely, IC = {1} and IP = {0}.

5. Like for PN, every positive value W−(p, t) defines an input arc from the place
p to the transition t and corresponds to the arc label. Graphically, the label
is omitted whenever W−(p, t) = 1. Similarly, every positive value W+(p, t)
defines a labeled output arc from t to p, but in this case t is by definition
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an elementary transition. An output arc from an abstract transition t to p
depends (in addition) on the I’s indices. Its label corresponds to the symbolic
sum 〈Σi∈2I W+(p, t, i).i〉, defined for the positive values {W+(p, t, i) > 0}i∈I .
Graphically, the term W+(p, t, i).i is abbreviated to i whenever W+(p, t, i) =
1. For instance, the label of (t2, P5) is 〈0〉, meaning that this output is used
to produce 1 token according to a preemption (index 0). The output arc
(t2, P4) is labeled by a sum of indices 〈0 + 1〉 since it can be involved either
in a cut step (index 1) or a preemption (index 0).

In a RPN, we have two kinds of markings: extended markings and ordinary mark-
ings. An extended marking defines the state of the RPN. An ordinary marking
represents an execution context of a thread.

Definition 2. An extended marking of a RPN R = 〈P, T, I, W−, W+, Ω, Υ, K〉
is a labeled rooted tree directed from the root to the leaves Tr = 〈V, M, E, A〉
where:

1. V is the (possibly empty) finite set of nodes. When it is non empty v0 ∈ V
denotes the root of the tree,

2. M is a mapping V → NP associating an ordinary marking with each node,
3. E ⊆ V × V is the set of edges,
4. A is a mapping E → Tab associating an abstract transition with each edge.

Notations and conventions:
For each node v ∈ V , we denote by Succ(v) the set of its direct and indirect
successors including v. Moreover, when v is not the root of the tree, we denote
by pred(v) its unique predecessor in the tree. The initial extended marking is
denoted by Tr0 and the empty extended marking is such that V is empty and is
denoted by ⊥. According to an extended marking, a path is denoted by v0

t1−→
v1

t2−→ · · · tn−→ vn iff ∀i in 0..n− 1, (vi, vi+1) is an edge of the extended marking
labeled by the abstract transition ti+1. When M(v) ∈ Υi (with i ∈ IC), a cut step
may be performed from v. This operation is denoted by τi. Reach(R, m0) denotes
the set of reachable extended markings of a marked RPN (R, m0), where m0 is
the initial ordinary marking of the places of R. For concision, V (Tr) denotes the
set of nodes of Tr. A step (or an event) of a marked RPN may be either a firing
of a transition or a cut step. The pre-set of a transition t (with t ∈ Tel ∪ Tab) is
given by •t = {p ∈ P |W−(p, t) > 0}.

Definition 3. A transition t is enabled in a node v (or in marking M(v)) of an
extended marking Tr = ⊥ (denoted by Tr

t,v−−→) if ∀p ∈ P, M(v)(p) ≥ W−(p, t)
and a cut step τi (with i ∈ IC) is enabled in v (or in marking M(v)) (denoted
by Tr

τi,v−−→) if M(v) ∈ Υi.

Definition 4. The firing of an abstract transition tf from a node v of an ex-
tended marking Tr = 〈V, M, E, A〉 leads to the extended marking Tr′ =

〈V ′, M ′, E′, A′〉 (denoted by Tr
tf ,v−−→ Tr′) such that:
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for v′ being a fresh identifier, the five following points hold:

1. ∀p ∈ P , M(v)(p) ≥W−(p, tf ),
2. V ′ = V ∪ {v′}, E′ = E ∪ {(v, v′)}, ∀e ∈ E, A′(e) = A(e), A′((v, v′)) = tf ,
3. ∀v” ∈ V \ {v}, M ′(v”) = M(v”),
4. ∀p ∈ P , M ′(v)(p) = M(v)(p)−W−(p, tf ),
5. M ′(v′) = Ω(tf ).

Definition 5. The firing of an elementary transition tf of Tel from a node v
of an extended marking Tr = 〈V, M, E, A〉 leads to the extended marking Tr′ =

〈V ′, M ′, E′, A′〉 (denoted by Tr
tf ,v−−→ Tr′) such that:

for E” = {(v, v′) ∈ E|K(tf , A((v, v′))) is defined } and V ′′ = {v′ ∈ V |(v, v′) ∈
E”}, the five following points hold:

1. ∀p ∈ P , M(v)(p) ≥W−(p, tf ),
2. V ′ = V \ (∪v′∈V ′′Succ(v′)), E′ = E ∩ (V ′ × V ′),
3. ∀e ∈ E′, A′(e) = A(e),
4. ∀v′ ∈ V ′ \ {v}, M ′(v′) = M(v′),
5. ∀p ∈ P , M ′(v)(p) = M(v)(p)−W−(p, tf ) + W+(p, tf ) +

∑
e∈E” W+(p, A(e),

K(tf , A(e))).

Definition 6. The firing of a cut step τi from a node v of an extended marking
Tr = 〈V, M, E, A〉 occurs when M(v) ∈ Υi and leads to the extended marking
Tr′ = 〈V ′, M ′, E′, A′〉 (denoted by Tr

τi,v−−→ Tr′) such that:

– (v = v0) implies Tr′ = ⊥,
– (v = v0) implies the three following points:

1. V ′ = V \ Succ(v) , E′ = E ∩ (V ′ × V ′), ∀e ∈ E′, A′(e) = A(e),
2. ∀v′ ∈ V \ {pred(v)}, M ′(v′) = M(v′),
3. ∀p ∈ P , M ′(pred(v))(p) = M(pred(v))(p) + W+(p, A(pred(v), v), i).

Example 1. Consider again the net of Fig. 1. The upper part of the Figure
shows a simple recursive PN. One can notice that the RPN is disconnected; it
contains two connected components. One of these components is activated by the
transition t2. Note that the transition t2 has two different ways of completion:
t2 may terminate by reaching a final marking or may be preempted by the
firing of t1. The output tokens of t2 are either P4 and P5 (corresponding to
the termination index 0) or only P4 (corresponding to the termination index 1).
Two firing sequences of this net are also presented in Fig. 1. Tr0 is the initial
extended marking of this net. One can notice that the firing of the abstract
transition t2 from the node v0 of Tr0 leads to the extended marking Tr1, which
contains a fresh node v1 marked by the starting marking of t2. Then, the firing
of the elementary transition t4 from v1 in Tr1 leads to an extended marking
Tr2, having the same structure as Tr1 and in particular the same set of nodes.
In fact, only the ordinary marking of the node v1 is changed by this firing. The
same reasoning holds to the firing of t5 from v1 in Tr2, yielding Tr3. It is worth
noting that nodes can also be removed. Thus, the node v1 is removed either
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by the firing of the cut step τ1 from the node v1 of Tr3 or by the firing of the
transition t1 from the node v0 of Tr2. In the first case, the thread, called Th,
created due to the firing of t2 has necessarily reached a final marking, i.e. an
ordinary marking where the place P9 is marked (in other terms M(v1)(P9) ≥ 1).
Whereas in the second case, the marking of Th is not necessarily final. Besides
in both cases the suppression of v1 corresponds to the destruction of Th and to
the generation of the transition t2’s results in the execution context of the root
thread represented by the node v0 (see Tr4 and Tr5).

3 The Model of Time Recursive Petri Nets

A TRPN is an extended version of the RPN model, introducing timing man-
agement. Basically, TRPNs are based on the semantics of both TPN and RPN
models. A single time reference is assumed to cadence the time specifications.
In the following, the set (Tel ∪ Tab) ∪ {τi|i ∈ IC} is denoted by TC.

3.1 Syntactic Definition of a TRPN

A TRPN is a tuple 〈R, Is〉 where:

1. R is a RPN,
2. Is, the static interval function, is a mapping TC −→ Q+ × (Q+ ∪ {∞})

(where Q+ is the set of positive rational numbers). The function Is associates
with each element t of TC a temporal static interval. The lower and upper
bounds of such an interval for t, are denoted by sEFT(t) and sLFT(t). They
correspond to a static earliest firing time and a static latest firing time.

An extended marking of a TRPN is defined in a similar manner as for RPNs.
The firing conditions based on markings still hold but there are augmented by
timing constraints, not only for transitions but also for cut steps. Therefore a
transition enabled in a node of an extended marking is not necessarily firable
in the TRPN. When both enabling and timing conditions are satisfied by a
transition, its firing leads to an extended marking built in similar manner as for
RPNs. for pseudo RPNs.

The net of Fig. 2 illustrates the features of TRPNs. The additional items are
represented as follows: the name of a transition is followed by its static firing
interval, moreover the notation Υi:Is(τi) is used to represent the firing static
interval of a cut step τi. For sake of clarity in the graphical representation, the
[0,∞[ firing static intervals are omitted.

The net in Fig. 2 shows the modeling of a transaction performed by a remote
server. The status of the server is described by the places ON and OFF such that
ON indicates that the server is operational. In this case, the server can deal with
two kinds of requests (see the transitions t1 and t3) allowing for each one to run a
transaction (see the abstract transitions t2 and t4 with their respective associated
starting markings, including a token in Pinit). Both transactions correspond to
the same connected component (see the places Pinit and Pend), except that they
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Fig. 2. A TRPN application

run with different timing conditions. Thus a transaction associated with a request
of kind 1 (the transition t1) must finish within 4 time units (see the transition
t7) whereas a request of kind 2 (the transition t3) within 7 time units (see the
transition t8). A running transaction may either commit (represented by a token
in the place Pend obtained by some firing of the transition tlocal) or abort when
its allocated time expires (represented by a token either in the place P6 or place
P8). The corresponding final markings are represented by Υ1 and Υ0 respectively.
Independently of the termination, a new request of any kind is possible, therefore
the output arcs of t2 and t4 are labeled by both termination indices 0 and 1. A
completion implied by a marking belonging to Υ0 is immediate (see the timing
constraint attached to Υ0). Moreover, the server can be reset at any time (in this
case, the place OFF becomes marked through the firing of the transition Reset).
Any running transaction corresponding to t2 or t4 is then stopped immediately (in
any case, the termination index is 0, as it is specified and attached to the transition
Reset). The server will be operational within 100 time units (see the transition
Start), so that new requests could be taken into account.

So, this example demonstrates the use of both external and internal pre-
emptions (i.e. exceptions). Indeed, the firing of t1 models a possible external
preemption whereas the cut step τ1 an internal one. The example also shows a
recursive call within the transaction (see the abstract transition tfork and its
starting marking). Therefore, there may be infinite firing sequences due to this
transition, for instance: (t1,t2,tfork,tfork,tfork,. . .). So, the depth of the reach-
able extended markings is infinite and the number of nodes in these extended
markings is also infinite.

3.2 The TRPN Semantics

The semantics of TRPNs can be given in terms of Timed Transition Systems
which are usual transitions systems such that the different execution sequences,
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called timed firing sequences, use two kinds of labels: discrete labels for events
and positive real-valued labels for time elapsing. The model assumes a set of
clocks, based on the same time reference, used to condition the firing from states.
Main aspects of TRPN are now listed in an intuitive manner:

1. A set of positive real-valued clock(s) is associated with each reachable ex-
tended marking Tr: one for every node of V (Tr) and element of TC. Actu-
ally, each element of TC may have several concurrent temporal behaviors in
Tr, one per execution context (i.e., node).

2. According to a timed firing sequence, every reachable state is composed of
a reachable extended marking Tr and a clock valuation νc ∈ R

TC×V (Tr)
≥0

(where R≥0 is the set of positive real numbers), such that νc(t, v) represents
the elapsed time since t became last enabled in the node v. Such an enabling
has occurred either in Tr or in one of its predecessors in the sequence. The
initial state of a TRPN is (Tr0, νc0) such that ∀t ∈ TC, νc0(t, v0) = 0.

3. The firing (itself) of an element of TC from any state takes no time but it may
imply a management of clocks, since nodes in the reached extended marking
can be added or removed, depending on the kind of the fired element.

Like in other time PN models, we introduce a concept of “newly enabled tran-
sitions” inducing clocks to be reset. However, the concept depends now on the
types of transitions.

Definition 7. “Newly enableness of TC elements”.
Consider a firing 〈V, M, E, A〉 t,v−−→ 〈V ′, M ′, E′, A′〉. The TC elements newly en-
abled after the firing of t from v are obtained as follows:

– t ∈ Tel: only v may have newly enabling elements, more precisely, any el-
ement t′ of TC is newly enabled in v after this firing iff t′ is enabled in
marking M ′(v) and, either t′ is not enabled in (M(v)− •t) or (t′ = t).

– t ∈ {τi|i ∈ IC}: only pred(v) may have newly enabling elements, more pre-
cisely, any element t′ of TC is considered newly enabled in pred(v) after this
firing iff t′ is enabled in M ′(pred(v)) and is not enabled in M(pred(v)).

– t ∈ Tab: only the fresh node v′ obtained in V ′ and the node v are concerned,
more precisely, all the elements of TC are newly enabled in v′. Besides t may
be newly enabled in v if it is enabled in the new marking of v (i.e., M ′(v)).

Let’s now give the semantics of a marked TRPN in terms of a timed transition
system.

Definition 8. “TRPN semantics”
The semantics of a marked TRPN (R, m0) is a transition system SR,m0 =
(Q, q0, �→) where:
For X = TC × V (Tr) and V all = (

⋃
Tr∈Reach(R,m0) V (Tr))

– Q = Reach(R, m0)× (
⋃

Tr∈Reach(R,m0) RX
≥0),

– q0 = (Tr0, νc0),
– �→= Q × ((TC × V all) ∪ R≥0) × Q consists of the discrete and continuous
transition relations described as follows:
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1. The discrete transition relation, denoted (Tr, νc) �→t,v (Tr′, νc′), is defined,
for any t ∈ TC and v ∈ V (Tr), by:
(a) Tr

t,v−−→ Tr′,
(b) sEFT (t) ≤ νc(t, v) ≤ sLFT (t),
(c) ∀t′ ∈ TC and ∀v′ ∈ V (Tr′), νc′(t′, v′) = 0 iff t′ is newly enabled in

M ′(v′) (where M ′(v′) is the ordinary marking of v′ in Tr′), otherwise
νc′(t′, v′) = νc(t′, v′).

2. The continuous transition relation1, denoted (Tr, νc) �→d (Tr′, νc′), is de-
fined, for any d ∈ R≥0, by:
(a) Tr = Tr′,
(b) ∀t ∈ TC and ∀v ∈ V , νc′(t, v) = νc(t, v) + d,
(c) ∀t ∈ TC and ∀v ∈ V , t is enabled in M(v) (where M(v) is the ordinary

marking of v in Tr) ⇒ νc′(t, v) ≤ sLFT (t).

Example 2. Consider the net of Fig. 1 again and its extended marking sequence
Tr0. . . Tr5. Moreover, add a timing function Is over the net, such that: Is(t1) =
[3, 4], Is(t2) = [0, 1], Is(t3) = [0, 0], Is(t4) = [1, 1], Is(t5) = [0,∞[ and Is(τ1) =
[0,∞[, and consider that the clock signature of any extended marking’s node v
is νc(v) = (x1, x2, x3, x4, x5, r1) where xi and r1 represent positive real values,
respectively associated with transition ti and cut step τ1. The following timed
firing sequence brings out the case where the time between two successive firings
are 0 everywhere but 1 between t2 and t4:

Tr0 �→ t2, v0 Tr1 �→ 1
νc(v0) = (0, 0, 0, 0, 0, 0) νc(v0) = (0, 0, 0, 0, 0, 0)

νc(v1) = (0, 0, 0, 0, 0, 0)
Tr1 �→ t4, v1 Tr2 �→ t5, v1

νc(v0) = (1, 1, 1, 1, 1, 1) νc(v0) = (1, 1, 1, 1, 1, 1)
νc(v1) = (1, 1, 1, 1, 1, 1) νc(v1) = (1, 1, 1, 1, 0, 1)

Tr3 �→ τ1, v1 Tr5
νc(v0) = (1, 1, 1, 1, 1, 1) νc(v0) = (1, 1, 1, 1, 1, 1)
νc(v1) = (1, 1, 1, 1, 0, 0)

3.3 Comparing TRPN and TPN

A TRPN inherits by construction from all RPN modeling concepts [8]. In par-
ticular, the same connected component description can be used with different
execution contexts, whereas an equivalent modeling by TPNs would require an
explicit representation of each execution context and thus a duplication of the
component. Moreover, (T)RPNs have the capability to interrupt a component
under some timing conditions by firing only one elementary transition. The mod-
eling of such an interruption by using a (T)PN is a task more complex since this
1 W.r.t. the clocks associated with any (current) extended marking, a time elapsing

step makes all the clock valuations progress synchronously. Moreover, the time pro-
gression cannot disable firings, either of transition or cut step.
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requires to freeze each transition of the component. Hence, TRPN are more com-
pact than TPN. In addition, TRPN has a better expressivity than TPN since
some kinds of infinite systems can be modeled by TRPN but not by TPN. Typ-
ically, those systems whose some state must be reached from an infinite number
of other states. Indeed, like in RPN, the transition system associating with a
TRPN may have some states with an infinite in-degree.

4 Computation of the Extended State Class Graph

Time Petri Nets have a dense model of time, thus the state space is potentially
infinite. Techniques for reducing the infinite state space to a finite one are nec-
essary: several techniques have been introduced to define and compute the state
class graph [1]. Here, we propose a technique for computing an extended state
class graph for TRPN. Let us recall that the state of a TPN is represented by
a pair called “class”, composed of an ordinary marking and a firing domain
defining possible firing times.

With regard to TRPNs, we can follow a similar approach but a class must
refer to an extended marking, that means a collection of ordinary markings.
We should have a firing domain attached to each of these markings. However,
by assuming only one time reference for the whole model, we could gather the
different firing domains of the extended marking in only one, representing the
firing domain of the class. Technically, a class is now a pair C = (Tr, D) such
that Tr is its extended marking and D its firing domain. Actually, D is a system
of inequalities that define, for every node v of Tr, the time intervals during which
those transitions or cut steps enabled in v can be fired. Thus a variable of such
system features a pair < t, v >, where t belongs to TC and v a node of Tr,
namely t.v. Observe that t.v represents the firing date of t from the node v of
class C. Classically, such an inequality may have one of the two following forms:

1. αv <= t.v <= βv, ∀t ∈ TC such that t is enabled in M(v), (where M(v) is
the ordinary marking of v in Tr)

2. γv,v′ <= t.v− t′.v′ <= γ′
v,v′ , ∀t, t′ ∈ TC such that t is enabled in M(v) and

t′ in M(v′) (where M(v) and M(v′) are the ordinary markings of v and v′

in Tr, respectively).

In these inequalities, the bounds are rational constants, αv, γv,v′ ∈ Q+ and
βv, γ

′
v,v′ ∈ Q+ ∪ {∞}. Let us recall that the number of the constants αv, γv,v′ ,

βv and γ′
v,v′ which appear in the firing domains of a TPN is finite [1]; this result

holds for TRPNs, since the computation of these constants is similar to that of
TPNs.

4.1 Construction of the Successor Classes of a Class

The construction of the extended state class graph classically consists in de-
termining all the reachable classes from the initial one, by inferring the firing
rule until convergence is obtained, based on an equality operator on classes. The
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initial class of a TRPN is C0 = (Tr0, D0) where D0 is defined as: ∀t ∈ TC, t
enabled in v0 ⇒ sEFT (t) ≤ t.v0 ≤ sLFT (t) is an inequality of D0. Moreover,
two classes C1 = (Tr1, D1) and C2 = (Tr2, D2) are equal iff Tr1 = Tr2 and
D1 = D2. A firing from a class depends on both enabling and timing conditions.

Definition 9. An element t of TC can be fired from a class C = (Tr, D) if and
only if the following two conditions hold: (i) there exists a node v of Tr such
that t is enabled in v and (ii) D enriched by the inequalities of the following
set {t.v ≤ t′.v′| t′.v′ is a variable of D different from t.v} has a solution. These
added inequalities are called firability conditions of t and v.

The firing of an element t of TC from a class C = (〈V, M, E, A〉, D) and a
node v (where v ∈ V and t is enabled in C) leads to another class C′ =
(〈V ′, M ′, E′, A′〉, D′). This action is denoted by C

t,v−−→ C′. C′ is computed in the
following way:
(i) 〈V, M, E, A〉 t,v−−→ 〈V ′, M ′, E′, A′〉,
(ii) The computation of D′ is carried out according the following steps:

1. D′ = D.
2. D′ is enriched by the firability conditions for t and v.
3. Remove from D′ the inequalities in relation with the nodes which have been

removed due to the firing of t from v.
4. If t corresponds to a transition, eliminate from D′ each variable associated

with a transition t′ (except t) such that t and t′ are in conflict in marking
M(v) (i.e. t and t′ are enabled in M(v) and ∃p ∈ •t ∩ •t′, M(v)(p) <
W−(p, t) + W−(p, t′)).

5. In this reduced system D′, substitute each variable x , with x = t.v, with
x + t.v and eliminate the variable t.v.

6. In this last step, for each node v′ of V ′ and each element t′ of TC such that
t′ is newly enabled in v′ after the firing of t from v (see Definition 7), we
introduce a new inequality sEFT (t′) ≤ t′.v′ ≤ sLFT (t′) in D′.

Example 3. Consider the net of the Example 2 and let us assume now that
the initial marking is m0=(2P1, P3). One final sequence of the corresponding
extended state class graph is C0

t2,v0−−−→ C1
t4,v1−−−→ C2

t5,v1−−−→ C3
τ1,v1−−−→ C4

t1,v0−−−→
C5

t3,v0−−−→ C6
t1,v0−−−→ C7, where:

5 Some Properties of TRPNs

We now focus on boundedness and finiteness of marked TRPNs. In a RPN, the
boundedness property ensures that there is a finite bound of tokens for each place,
regarding all the ordinary markings of all the (reachable) extended markings. The
finiteness property states that the number of reachable extended markings is fi-
nite. In Petri Nets, these two properties are equivalent and decidable. The equiva-
lence does not hold for RPNs but decidability remains for both properties. A finite
RPN is necessarily bounded but a bounded RPN is infinite when the depth of the



116 D. Dahmani, J.-M. Ilié, and M. Boukala

Table 1. A final sequence of the extended state class graph

Class Extended marking Firing domain Class Extended marking Firing domain
name name
C0 •v0 (2P1, P3) 3 ≤ t1.v0 ≤ 4 C1 •v0 (2P1) 2 ≤ t1.v0 ≤ 4

0 ≤ t2.v0 ≤ 1 ↓ t2 1 ≤ t4.v1 ≤ 1
•v1(P7)

C2 •v0 (2P1) 1 ≤ t1.v0 ≤ 3 C3 •v0 (2P1) 0 ≤ t1.v0 ≤ 3
↓ t2 0 ≤ t5.v1 ≤ ∞ ↓ t2 0 ≤ τ1.v1 ≤ ∞

•v1 (P8) •v1 (P9)
C4 •v0 (2P1, P4) 0 ≤ t1.v0 ≤ 3 C5 •v0 (P1, P2, P4) 3 ≤ t1.v0 ≤ 4

0 ≤ t3.v0 ≤ 0
C6 •v0 (P1, P6) 3 ≤ t1.v0 ≤ 4 C7 •v0 (P2, P6)

reachable extended markings is infinite. An unbounded depth can be decided as
follows. The reachability graph is build until either the construction of the graph
finishes or a reachable extended marking Tr is computed such that there are two
fresh nodes v1 and v2 of Tr issued by the firings of the same abstract transition and
v1 is the ancestor of v2. In other terms, the extended marking contains a path com-
posed of edges labeled by the same abstract transition (label repetitions). Such a
path is necessarily infinite [8] (Table 1).

Theorem 1. The reachability and boundedness problems for TRPNs are
undecidable.

Proof. Straightforward, since TPNs are particular cases of TRPNs without ab-
stract transitions and these properties are undecidable for TPNs.

In the following, we study conditions for a TRPN to be finite. A TRPN is finite
iff the number of extended markings contained in the reachable state classes is
finite.

Lemma 1. W.r.t. a marked TRPN, the set of all the firing domains is finite iff
the depth of the extended markings of the reachable state classes is finite.

Proof. We proceed by contradiction. (⇐) Assume that the set of all the firing
domains of the TRPN is infinite. This implies that the number of possible vari-
ables used to describe the different firing domains is infinite, since as for TPN,
the number of the constants αv, γv,v′ , βv and γ′

v,v′ appearing in all the firing
domains is finite [10]. Moreover, the variables (t.v) used to describe the firing
domains of the reachable state classes depend on both elements of TC and nodes
of the extended markings of these classes. So, we deduce that an infinite num-
ber of variables implies an infinite number of nodes in the reachable extended
markings (the set TC is bounded). By consequence, the depth of the reachable
extended markings is infinite.

(⇒) Assume that the depth of the extended markings is infinite, then the
number of nodes in the reachable extended markings is infinite. It is obvious
that the number of variables (t.v) defining all the firing domains is infinite.
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Theorem 2. A TRPN is finite if the two following points hold:

1. there is no reachable state class whose extended marking contains a path with
at least two arcs labeled by the same abstract transition,

2. there is no state class C′ = (Tr′, D′) reached from another reachable state
class C = (Tr, D) such that a common node v satisfies MTr′(v) > MTr(v)
(MTr and MTr′ represent the ordinary marking functions of Tr and Tr′,
respectively).

Proof. Assume that the TRPN is infinite, leading to an infinite number of dis-
tinct state classes. Here there are two possible cases: (i) there is an infinite
number of firing domains. We deduce from Lemma 1, that the depth of ex-
tended markings contained in the reachable state classes is infinite. From [8], we
know that such an infinite depth is due to an infinite path which contains labels
repetitions. So, there is a state class violating the point 1 of the theorem. (ii)
The number of firing domains is finite but not the number of extended mark-
ings of the reachable state classes. So, there is at least one infinite sequence in
the state class graph. Let σ be the corresponding series of extended markings.
By applying Lemma 1, we know that the depth of the extended markings of σ
is finite (since here the number of firing domains is finite). So, the number of
distinct nodes in the extended markings of σ is finite. Therefore, there is neces-
sarily a node v which is common to an infinite number of extended markings of
σ. Consequently, σ contains an infinite subsequence of extended markings, each
one having a different ordinary marking for v. Since this subsequence is infinite,
we can always extract a subsequence σ1 from it, such that the marking of v is a
strict increasing function. The point 2 of the theorem is then violated.

6 Conclusion

Time Recursive Petri Nets extend RPNs so that timing constraints are bound
to transitions and cut steps specifications. In addition to RPN modularity, ex-
ception and preemption concepts, both delays and durations of multi-threads
applications are now modeled easily. In case of infinite systems, TRPNs are more
expressive than TPNs, however, we have shown that the theoretical background
of TPN can be exploited for TRPNs despite the fact that the number of time
variables depends now on the number of threads to be dealed with. Furthermore
we have adapted the analysis tool of TPNs for TRPNs, named the state class
graph, and proposed a sufficient condition of finiteness. This will allow us to
investigate verification techniques based on finite systems, like model checkers.
Our tool, which extends the input format of the ROMEO TPN tool, is under
experiment.
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Abstract. A case handling system is an information system supporting
the handling of cases. The (sub) tasks for a particular case are performed
by persons or software agents and the result of a task is the updating
of the case data. Case handling systems consist of three parts: (1) a
workflow engine that executes the process of a case, (2) a document
manager that manipulates the case data and (3) a database manager
for manipulation of the global data, i.e., the data that is independent
of a particular case. In this paper we present a new methodology for
the first four phases of the development of a case handling system: (1)
user requirements, (2) functional architecture, (3) software architecture,
and (4) the prototyping phase. The methodology is supported by a tool
consisting of a Petri net based workflow engine, a standard document
manager and a standard database system.

1 Introduction

In this paper we describe a methodology for the early stages of the development
of a Case Handling System (CHS), resulting in a prototype of the system. A CHS
is an information system for the support of a business process whose primary
goal is the handling of cases. Typical examples of cases are claims in an insurance
company, patients in a hospital, trip reservations in a travel agent system, sales
orders in an auctioning system and orders in a manufacturing company. Thus
CHSs are used in many application domains.

A case is an instance of a case type. A case type has two characteristics: (1)
a workflow, i.e., a partially ordered set of tasks to be performed, and (2) a case
document type, an instance of which is a case document. Tasks for a case are
performed by roles, which are usually human beings, although software agents
are becoming widely used as an alternative. Each task requires a particular view
on the case data, and task execution results in updating this view. A task of
the insurance company can be the registration of a claim; at a hospital it could
be taking the blood pressure of a patient by a nurse. While handling the case,
the case document may grow and at the end it contains all relevant information
about the case.
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Case handling usually also requires data that does not depend on a particular
case, so-called global data. Global data concerns background information, such
as addresses or a product catalogue, and management information, which is
aggregated information over the cases, such as the number of running cases or
the total number of cases having reached a particular state.

A CHS has three main components: (1) a workflow manager for the execution
of workflow processes, (2) a document manager for retrieving and updating case
documents and (3) a database manager (DBMS) for the manipulation of global
data. The workflow engine determines for each case which tasks are enabled and
sends a relevant view of the case document and the global data to the role that
will handle this task.

The design of a system requires modelling and in our situation we have to
model workflow processes, case documents and the global data. The methodology
we propose is a continuation of the research presented in [9] where use cases are
modelled as workflows. In this paper the emphasis is on the integration with the
data perspective and the use of the prototyping environment. We developed a
tool specifically tuned for modelling and prototyping CHSs. The tool consists of
a workflow engine YasperWE that is derived from the Petri net modelling tool
Yasper [7,8], the commercial document manager Infopath (part of the MS Office
suite) and a standard ODBC database manager (in our situation MySQL). The
specific components of the prototyping environment are not particularly relevant
but more a proof of concept of the approach, i.e., they can be replaced by similar
components.

Related Work. In literature, e.g. [3], a CHS is considered to be more data-
driven than a workflow management system. The authors state that too fine
grained activities in workflow systems are restricting the user too much. As a
solution to this problem, they propose a less granulated approach by enabling
activities based on case data, and by allowing to skip or to redo activities. In
our approach, the workflow manager is used to control the overall process of
coarse grained activities, while the document manager regulates the operations
on the case data by defining rules about data dependencies, such as mandatory or
optional data elements. For example, instead of defining the addition, updating
and deletion of products in an offer as different and successive activities, we
consider the order creation just as one activity.

For modelling workflows the Petri net formalism is very suitable [2,13,15].
Since document handling requires data manipulation, the formalism of coloured
Petri nets and their supporting tools (e.g. [1,14]) seem to be a good solution for
modelling and prototyping CHSs, as proposed in e.g. [5,6]. However, handling
case documents requires particular functionality that is already available in doc-
ument managers. The same holds for data manipulation functions in a database
manager. It is not very efficient to imitate this functionality in a coloured Petri
net tool. In [11] a more general approach for information systems is described,
but it does not use formal methods.

This paper is organized as follows: first we introduce basic definitions in
Sect. 2. In Sect. 3 we introduce a running example. We present our design
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methodology in Sect. 4. In Sect. 5 we show how the tool Yasper can be used to
model workflow processes. Next, in Sect. 6, we show how Infopath can be used
to model case documents and how the case document and workflow processes
are integrated using our tool YasperWE. Concluding remarks are given in the
last section.

2 Basic Definitions

An inhibitor Petri net consists of two disjoint sets S, and T , of respectively
places and transitions, a flow function F : (T × S) ∪ (S × T )→ N, and a set of
inhibitor arcs I ⊆ (S ×T ). Places are depicted as circles, transitions as squares.
If for a place s ∈ S and transition t ∈ T F (s, t) > 0 (F (t, s) > 0), an arc
with multiplicity F (s, t) (F (t, s)) is drawn between place s (transition t) and
transition t (place s). An inhibitor arc is drawn as an arc with a dot at the
end. Markings are states (configurations) of a net. We consider a marking m of
N as a function S → N. In the graphical notation, the marking is represented
by putting m(s) tokens on place s. For each place s ∈ S and transition t ∈ T ,
F (s, t) defines the number of tokens consumed by t from s, and F (t, s) defines
the number of tokens produced by t to s. A transition t ∈ T is enabled in marking
m if F (s, t) ≤ m(s) for all s ∈ S, and for all s such that (s, t) ∈ I, m(s) = 0.
An enabled transition t may fire. This results in a new marking m′ such that
m′(s) = m(s)− F (s, t) + F (t, s) for all s ∈ S.

A Petri net N is a workflow net [2] if N has one initial place i such that
F (t, i) = 0 for all t ∈ T , and one final place f such that F (f, t) = 0 for all t ∈ T ,
and for any node n ∈ (S ∪ T ) there exists a path from i to n and a path from n
to f . The initial marking of a workflow net N is the marking m with m(i) = 1
and for all other s ∈ S \ {i}, m(s) = 0. The final marking of a workflow net N
is the marking m with m(f) = 1 and for all other s ∈ S \ {f}, m(s) = 0. A
workflow net is called sound [2] if the final marking can be reached from any
marking reachable from the initial marking.

We extend workflow nets with a special kind of token colouring, resources, a
timing mechanism and guards. In the remainder we call these nets extended Work-
flow nets. Our nets are a special class of timed coloured Petri nets [10]. We use
colouring for giving the case tokens the case identity. A case identity, e.g. a nat-
ural number, is created when the first case token is created, and it is never changed.
The only operations on this colour set are ‘copy’ and ‘test for equality’. Besides
case tokens we have ‘normal’ black tokens, which are treated as in classical Petri
nets. A place can only store tokens of one type: either case tokens or black tokens.
The places that store case tokens are called case sensitive places.

The firing rule is modified by adding the requirement that all case tokens con-
sumed and produced have the same identity. In case a transition does not consume
any case token, it creates a new case identity for the produced case tokens, i.e., the
case tokens produced have the identity that differs from all identities of the case
tokens present in the net. Such a transition is called an emitter. A transition with
only case sensitive places as input, and not as output, is called a collector.
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(a) AND task semantics (b) XOR task semantics

Fig. 1. Macros and their definition as Petri net

We also introduce two macros, which we call tasks: an AND task, and an XOR
task (see Fig. 1). For every task, a role may be specified, which is a resource type
that may execute this task. An AND task needs tokens in all its input places to
be enabled, and, if fired, it produces tokens in all its output places tokens. An
XOR task needs tokens in one of its input places to be enabled, and, if fired,
it produces tokens in one of its output places. The choice of output place to
produce in, is either randomly chosen, or it can be specified using case data.
The XOR task can have an additional weight function, giving each outgoing arc
a probability to be chosen as output place. Implicit choices, made by conflicts,
have equal probability to be chosen (for more details see [7]).

3 Running Example

As a running example we consider the development of a generic web shop system.
The web shop has to serve as a mediating party between customers and suppliers.
The products the web shop offers are composed out of parts delivered by several
suppliers. Different suppliers may offer the same part. Also the transportation of
orders is performed by third parties. The web shop follows the “make-to-order”
principle, which means that it has no stock and all components are ordered on
demand at the different suppliers. Figure 2 depicts the web shop and the actors
involved in the system.

The system has no domain specific information and therefore can be used in
any branch. To run the system in a specific context, it has to be configurable.
Configuration parameters are not only the name of the shop and contact infor-
mation, but also the payment scheme and the information whether there are
consultations with suppliers and transporters to make an offer to the customer.
If a consultation is needed, also the decision which supplier and transporter are
selected needs to be flexible, i.e., the lowest price or the fastest delivery time.

Customers can browse through the catalogue of the web shop and select prod-
ucts. These products consist of compulsory and optional parts. The customer can
alter the selected product by adding and removing parts. After filling the shop-
ping cart, the customer can request an offer for the products in its shopping cart.
The web shop then contacts all suppliers that offer a part present in the offer to
ask its price and delivery time in order to make a proposal to the customer, and
selects the suppliers based on the system’s decision rule. Also the transporters
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Fig. 2. The web shop and its actors

are contacted to ask when and for what price they can deliver. Based on these
answers, the system composes the offer. The customer then has a choice to ac-
cept or to reject the offer. Based on the configuration, the customer may have
to make an initial payment to confirm the offer acceptation. When the offer is
accepted and, if required in the configuration, an initial payment has been made,
the system confirms the selected offers to the chosen suppliers of the different
parts, and rejects the other offers. The selected suppliers are paid according to
some payment scheme. After receiving all components, the product is assembled
and the transporter is contacted to send the order to the customer. The customer
might have to make a payment on delivery, depending on the configuration.

4 Design Methodology

We present an approach for the first development phases of a CHS, resulting in
a prototype of the system. In our approach it is important that no programming
is needed to create a prototype. The development starts with the identifica-
tion of the case type. In the further development we identify four phases, the
User Requirements, the Functional Architecture, the Software Architecture and
the Prototype phase. In the user requirements phase, the system and its func-
tionality are identified and agreed upon with the client. These requirements are
formalized into process and data models in the functional architecture phase.
The created models also need to be verified in this phase, to show correctness.
In the software architecture phase, the models are combined into a component
model, and the case document type is formalized. The case document model,
the global data model and the component model are combined into a prototype
during the prototype phase. The prototype will be used to validate the user
requirements in experiments with (potential) users. Figure 3 depicts the differ-
ent deliverables during the phases, and how these deliverables depend on each
other.

4.1 User Requirements

In the user requirements phase we focus on functional requirements. In user
requirements, actors, persons and systems that interact with the system in de-
velopment, and their actions with the CHS are identified. Use cases describe
the functionality of the system. A use case is a piece of functionality involving
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Fig. 3. Deliverables and their dependencies in the different phases

one or more actors and identified by a set of scenarios. A scenario is a sequence
of actions; it can be either a positive scenario, describing the allowed behaviour,
or a negative scenario, describing the undesired behaviour. These scenarios are
often decided in consultation with the client. A natural way to model scenarios
is using Message Sequence Charts (MSC) [12], to express what actions are taken
by whom and in what order. In the next phase, the use cases are formalized with
process models.

Part of the user requirements are the data objects involved in the system.
These are the objects that the actors store, manipulate and retrieve with the
system. In the user requirements phase, different data object types are identified
and listed together with their attributes and relations.

The output of this phase is a document describing the desired functionality
of the CHS in user-understandable terms, and it can be regarded as a contract
between the client and the developer.

In the example, the case is the order of a customer. We can identify the actors
Customer, Supplier, Transporter, Assembler, Bank and System.

A Customer can browse the catalogue, select products, add or remove parts,
add a configured product to its shopping cart, request for an offer, and accept or
reject an offer. The supplier can send offers to the system for a part and deliver
ordered parts. The transporter can send an offer to the system, pick up orders
and deliver them. The assembler assembles parts into a product. The bank can
confirm and make payments.

Use cases of the web shop are e.g. the composition of a product by a customer,
the request for an offer by a customer, the acceptance of an offer by a customer,
the ordering of components at the suppliers, and the assembly and delivery of
the product.

The use case “request for an offer by a customer” can be characterized by
several scenarios. One possible scenario is a request for an order of a product
consisting of three parts. The system decides not to consult the third parties. It
finds the best suppliers for the three parts in the database, selects a transporter,
creates an offer and sends it to the customer.
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(a) scenario with consultation (b) a supplier does not respond

Fig. 4. Some scenarios of the use case “Request for an offer by a customer”

Another scenario is a request with consultation. An offer is requested for an
order of a product consisting of one part. The system decides to consult the third
parties. The part is provided by two suppliers, A and B. The system contacts
both A and B and makes a request for the part. Both suppliers send an offer.
The system selects the best supplier, and asks the transporter for what price and
when it can transport the product. After the response of the transporter, the
system creates an offer and sends it to the customer. This scenario is illustrated
in Fig. 4a, where both suppliers respond, and in Fig. 4b, where supplier B does
not respond within the defined time interval.

When specifying the scenarios, the data objects involved in the system and
their relations are identified. For the web shop we can identify different actors,
products and parts, configured products, configured parts, and customer, part
and transporter offers.

4.2 Functional Architecture

In the functional architecture phase, the user requirements are formalized. For
each use case the scenarios are combined into a workflow Petri net, such that
each positive scenario is a trace of the workflow model, while each negative
scenario is forbidden there. As a consequence, each action of an actor becomes
a transition in the created workflow Petri net.

The objects identified in the user requirements and their relations are sep-
arated into global and case data objects. For both global and case data an
Entity-relationship diagram (ERD) [4] is created, using only (zero-) one-to-many
functional binary relations, labelled with a unique identifier. A special relation
is the one-to-one relation, drawn with a triangle head, which is often used to
express an “is-a” relation. Constraints on attributes and between objects in
the data models are identified and formalized in the predicate logic. A view
on the case data model is defined for each of the actions the actors can per-
form. For each global data object a life cycle is created. The life cycle of an
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Fig. 5. The workflow that requests an offer to order a product

object defines in what states an object can be and what operations can be per-
formed on the object. As a result of these operations, an object may go to a
next state.

The actions of the actors can manipulate different objects in the system by
Create, Retrieve, Update, and Delete operations. The CRUD matrix [9] expresses
the relation between the transitions of the workflow and the operations on the
objects. A transition can execute operations for different objects. However, it
can only execute a single operation per object.

The developed workflow models of the use cases are then subject to analysis,
i.e., property verification and performance analysis. First we check correctness
properties of the workflow process, such as soundness. If the process satisfies
correctness properties, we check its performance, i.e., the throughput of cases
and utilization of resources, as will be explained in Sect. 5.

Then the CRUD matrix is verified. First, for each object in the matrix it is
checked whether it is created and used, i.e., for each object there is a transition
that creates the object, and there is at least one transition that retrieves or
updates it. The next check is whether the retrieve and update operations are
only performed between creating and deleting the object.

In our example, Fig. 5 shows the result of combining the scenarios of the use
case “Request of an offer by a customer”. The scenarios described in the user re-
quirements show that any number of suppliers and transporters can be consulted.
We create a workflow in which this feature is modelled using an inhibitor arc. All
basic actions of the actors are represented by a transition. For each transition per-
formed by an actor other than “system”, the role is added in italics.

Figure 6 shows the data model of the global and case data. A product consists
of parts; parts can belong to multiple products. Suppliers provide the web shop
with parts. Parts can be provided by different suppliers.

An offer is an order that is not yet accepted. An order consists of a con-
figured product, with configured components. All offers of suppliers and trans-
porters are stored respectively in “SupplierOffer” and “TransporterOffer”. For
each component the best offer of the suppliers is selected (relation p in the data
model). The best offer of a transporter is selected to deliver the order (relation
t in the data model). A typical constraint of this model is given in Equation 1,
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Fig. 6. The global and case data model using the technique described in Sect. 4.2. In
the diagram, PK indicates a primary key, FKi indicates a foreign key.

which states that for each order, the selected transporter made an offer for that
order.

∀co ∈ CustomerOrder : ∃to ∈ TransporterOffer : t(co) = to ∧ s(to) = co (1)

Each actor has its own view. The customer needs a view to create an order with
products and configured components of the web shop, a view to see the offer and to
accept or reject it. The supplier and transporter need a view to see the components
they have to make an offer for and to notify a delivery to the system.

4.3 Software Architecture

In the next phase, the Software Architecture, a component model is created.
A component consists of one process model and one data base (not necessarily
realized with a DBMS). The activities of the process can only use the data ele-
ments of the data base of the component. Communication between components
is modelled by the exchange of messages (represented as tokens) via places be-
tween the communicating components. A good practice is first to integrate all
workflow models representing the use cases and the life cycles into one process



128 K.M. van Hee et al.

Customer

Supplier
reject order

accept order

deliver component
request
offer

send
offer

reject
offer

accept
offer

ask
payment

payment order
confirmation

delivery
deliver
order

Order

Management
request
offer

reject order

accept order

request offeroffer

offerassemble
order

order
assembled

Transporter

Fig. 7. Structure diagram of the Web shop system

model, and then divide these models into components. The data model can be
divided over the components based on clustering, using the role types for the
activities and the data elements used in activities.

The scenarios defined in the user requirements are test cases of the system.
Each positive scenario should be a proper execution, while each negative scenario
should not be possible. After modelling, the model is verified for correctness.

Next step in this phase is to specify the I/O relations; the manipulations
of each transition in the integrated system on both the global and case data.
For each of the I/O relations it has to be shown that it does not violate any
data constraint specified in the functional architecture, and that it preserves the
CRUD matrix. Using SQL, it means that each action corresponds to a query
on the corresponding table of the object, i.e., each C action corresponds to an
insert query, each R to a select query, each U to an update query, and each D
to a delete query.

In our example, we could identify five components for our system: Customer,
Supplier, Transporter, Order and Management. Figure 7 shows the components
and their communication. Figure 8 shows how the use case “Request for an offer
by a customer” is assigned to different components. As the transitions “request
offer” and “receive offer” are actions of the customer, they are assigned to the
customer component. The offer sent by the supplier and transporter are assigned
respectively to the supplier component and to the transporter component.

4.4 Prototyping

In this phase the prototype of the system is created. As the complete system is
specified, we would like to generate the prototype, rather than program it. By
using YasperWE the prototype can be generated, as will be explained in Sect. 6.
The potential user can experience how the system will behave, and validate
the system to check whether the user requirements are met. Figure 10 shows a
screenshot of the running prototype of the web shop.
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Fig. 8. The workflow of “Request for an offer by a customer” divided into components

4.5 Meta Model and Tool Support

Figure 9 depicts the meta model showing how the different elements and docu-
ments in the phases relate. The actions of actors form the scenarios of use cases.
These use cases are formalized as workflow models. Data can be separated into
case data, with views on this data, and global data, with life cycles. A life cycle
consists of states and operations that can be performed in a state. An action of
an actor has a view on the case data attached.

Different phases are supported by different tools. Yasper supports modelling
and performance analysis of workflow processes (Sect. 5). For verification we
use Woflan [17] and LoLA [16]. These tools are only used at design time and
not during prototyping. Case documents are modelled in an easy way with Mi-
crosoft Infopath, which uses XML for documents and forms for views on the data
(Sect. 6). For modelling scenarios and relational data schemes, many specialistic
tools exist and can be used.

5 Modelling Workflows in Yasper

The tool Yasper [8,7] supports the modeling of processes described in Sect. 2. To
help the end-user to validate a workflow process, Yasper has an animation mode
to play the token game by hand. Each role has its own work list, containing all
tasks the role can execute in the current state (marking). By clicking in the work
list, the chosen task fires.

In the design of a system the performance should be analyzed in the early stages.
Performance analysis in Yasper is realized by simulation. Yasper calculates the
following four performance indicators: (the average) cycle time, (the average) cycle



130 K.M. van Hee et al.

Fig. 9. Meta model of our approach in the development of a CHS, using the technique
described in Sect. 4.2

costs, the (average) cycle waiting time and the (average) role utilization, where
a cycle is a run of a single case. The cycle time is the time that elapses between
creation of a case and the time a collector consumes the last token of this case. The
cycle waiting time is defined as the time that no tasks are executed for a specific
case, i.e., the time that no activity is performed on the case. The costs of a task is
the sum of the fixed costs of that task and the variable costs of that task multiplied
by the time units the task was running. The cycle costs is defined as the total costs
of all tasks executed in the cycle. The role utilization is the fraction of time a role
is involved in any task of any case.

6 Prototyping with YasperWE

In the second stage, after identifying the notion of the case, the designer starts
modelling the document type. Microsoft Infopath, part of the Microsoft Office
Suite, is a commercial document management system. To design CHSs, we cre-
ated a generic Infopath template. This template consists of some basic case data,
needed to define choices of XOR tasks in the workflow. For a particular CHS the
designer only has to extend this template.

6.1 Modelling the Case Document Type in Infopath

Infopath uses XML as a data type and offers functionality to design a docu-
ment as well as to fill in forms. The combination of a data definition and forms
definition is the configuration of the document manager. In the design mode
of Infopath, the designer models the case data in terms of an XML schema. In
Infopath, the data is structured using groups and fields. A group is a named con-
tainer, consisting of fields and other groups. A group can be seen as a singleton
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Fig. 10. YasperWE running the web shop in the running example

table definition in relational database. Multiple records of the same type can be
stored by making the group a repeating group. Forms consist of elements from
the XML schema and user interface controls, like radio buttons, check boxes, list
boxes, text fields, etc., to interact with the end-user. The data end-users enter
in these controls can be validated against rules, which can be set in the control.
Also constraints on the data elements based on the case data can be expressed.

An end-user uses the document manager to fill in and alter documents. The
submitted data can be saved locally, or it can be used in other systems, by
submitting the data to a program, a database or web service.

6.2 Integration by YasperWE

In the prototype phase, the workflow engine (YasperWE), the document manager
(Infopath) and the database manager (MySQL) are integrated to realize the
component model, the case document type and the global data model. Each task
performed by a role, needs a view on the case data. The designer has created the
views in the previous stage in Infopath. Yasper is used as the design tool and the
configuration tool for YasperWE. So the coupling of tasks to views in Infopath
is specified in Yasper and the actual linking is done by YasperWE. When the
designer finishes the global data model, the SQL definition of the global data
needs to be integrated in YasperWE.

The querying of the case data and of the global data can be done by Infopath
and MySQL separately, but in our prototyping tool we have chosen to transform
the case data from XML format into the relational database, because this makes
it easier to query and manipulate global and case data simultaneously. Query
processing is divided into two parts, prequeries and postqueries. Prequeries are
typically used to prepare the case data for presentation to the users, postqueries
to process the case data after the user completed the forms. As depicted in
Fig. 1, a task consists of a start transition and an end transition. Prequeries are
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executed with the start transition. If the task has to be performed by a role, the
case data is exported to Infopath, and users can then modify it. With the firing
of the end transition the postquery is executed. Note that the prequery is not a
precondition (which would possibly prevent a transition to execute), but part of
the executed task. The end-user can now validate the prototype of the CHS, by
animation, like in Yasper, but now with realistic data.

YasperWE is built as a generic template Infopath solution, which can be
extended for a case handling system. The solution needs the PNML file of the
workflow to start YasperWE. YasperWE then shows the workflow and the work
list. Picking tasks can be done using either the workflow or the work list.

7 Conclusions

Case Handling Systems form an important class of information systems and
therefore it is worthwhile to have a dedicated and efficient development approach
with supporting tools for them. We have presented such an approach here where
we combine (an extension of) the Petri net formalism for modelling the process
aspect and XML and the relational data model for the the two types of data
involved in CHSs; case data and global data respectively. The approach is based
on formal modelling techniques and verification methods. We also have combined
and integrated existing tools to construct a prototyping tool for CHS, based on
a Petri net modeler (Yasper), a document manager (Infopath) and a relational
database manager (MySQL). Each of these components can be replaced by a
similar one; the combination we presented here is a proof of concept.

We have done a number experiments with YasperWE in a second-year course
at our university. About a 100 students divided over 20 groups had to build a
prototype of the web shop presented here as running example within 10 weeks of
6h. The students modelled the complete system, from a product offer to delivery
and invoice. They used YasperWE to create the prototype. All groups succeeded
in showing a working prototype of the system. By following our approach they
found out that there are already many hidden problems in the development of
such a web shop, which they only could find out by modelling and verifying the
system formally.

The experimentwith students shows the applicability of the approach. However,
we need to do more case studies to test and improve the approach. At this point
in time, verification of the CRUD matrix, which is an important aspect of the ap-
proach, has to be done manually, which is error prone. Therefore, we want to extend
the tool support in this approach, to offer automatic verification and analysis.
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Abstract. We consider software systems consisting of a set of compo-
nents running as a sequential process. We model such software systems
as a special class of transition systems. The difference with existing ap-
proaches is that we propose a test procedure based on the structure of
the model and the prior test history that can be used for exhaustive test-
ing in an efficient way. On top of that we provide a statistical stopping
rule, that is independent of the underlying way of walking through the
system, which allows us to stop earlier with a certain statistical reliability.

Keywords: transition systems, Petri nets, stopping criterion, software
testing.

1 Introduction

Model-based testing is a software test method consisting of automatic generation
of efficient test procedures using models of the system (see e.g. [1,5,11] or [16]).
Formalization of testing theory was first presented in [8]. A few years later in
[3] a formal theory based on abstract data type specifications was introduced,
establishing the foundations of functional testing. Functional testing focuses on
black-box testing since only the input–output relation is tested. We are focusing
on structural testing in which we exploit the component structure of the system.
However, we abstract from the testing of the components themselves (can be
done by functional testing) but we concentrate on the control flow over the
components. We use a model of labelled transition systems where each transition
represents a component. Among the rich literature on labelled transition systems
based testing we mention the early papers [7,13] and [14], and more recently [4]
and [22].

In this paper, we consider a model of software systems consisting of a set
of components running as one sequential process. This can be seen as a step-
ping stone for more realistic models with several parallel threads (cf. [17,19]).
We model the components as transitions that either have a correct or an erro-
neous behaviour. In this context testing means executing software and observing
whether it behaves correctly or not. We assume that there is a way to determine
whether the execution of a transition is conforming to the specifications, for
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example by functional testing. Therefore, we define an error as a symbolic label-
ing of a transition that can be discovered only when the transition is fired. In
literature all kind of test strategies are considered in order to avoid exhaustive
testing which is not always feasible in practice (see e.g. [23]). These strategies
are usually expressed in terms of coverage where a certain amount of compo-
nents are covered. The difference with existing approaches (cf. [1,2,9]) is that we
consider a test strategy based on the structure of the model and the test history
that can be used for exhaustive testing (test all transitions in the system) in an
efficient way (our algorithm reduces the labelled transition system after certain
runs through the system) and on top of that we provide a statistical stopping
rule, that is independent of the underlying way of walking through the system,
which allows us to stop earlier with a certain statistical reliability. Hence, the
statistical procedure can also be considered as a coverage method but with a
statistical measure of quality. In spite of the extensive literature on statistical
stopping criteria for functional (black-box) testing ([6,10,15] or [18] to mention
some of them), there do not seem to be similar criteria for structural testing.
Our statistical procedure should not be confused with the common statistical
testing techniques developed in [21]. The term statistical testing is normally used
for the probability of coverage (components, branches, etc. . .) while we are us-
ing it for the remaining number of errors in the system. Our procedure stops if
the probability of having a predetermined number of remaining errors is smaller
than a certain confidence limit. Our underlying test strategy is also statistically
based, in the sense that the selection of the next transition to be tested is chosen
at random. However, we have a reduction algorithm to reduce the model based
on observed (and repaired) components.

The rest of the paper is organized as follows. An example of modelling a
real system as a labelled (workflow) transition system is presented in Sect. 2. In
Sect. 3 we introduce the test framework. A detailed description of the exhaustive
test strategy is explained in Sect. 4. The statistical release procedure is described
in Sect. 5. An example to illustrate a real application of our procedure is given
in Sect. 6. Finally, in Sect. 7 we discuss the results obtained so far and future
work.

2 Example of Modelling Software as a Workflow
Transition System

Before formalizing our test framework in Sect. 3, we illustrate with the follow-
ing example how we map the abstract model to a real application. This exam-
ple represents a simplified generic medical workflow of a hospital. The business
processes of the hospital are supported by an information system that is mainly
used for updating the electronic patient records, the planning of activities and
the protection of medical protocols. In this process the patient is central and
each new illness of a patient is a new case that flows through the process. Each
activity in the process is associated with a software service. The process model
we use here is a Petri net (cf. [20]) with an additional construct: an or-transition,
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Fig. 1. Replacement of the or-construct (diamond) by standard constructs

represented by a diamond. In fact the model is made in Yasper, a Petri net tool
(see [12] for details). The semantics of an or-transition is that it can fire as soon
as there is a token on one of its input places and that will produce a token for
exactly one of its output places. It is easy to replace the or-construct by standard
constructs: the or-transition is replaced by one new place, and a new transition
is added for each input or output place of the or-transition — connecting that
place with the newly added one (see Fig. 1).

Next we describe the process in more detail. The process starts with the
intake activity. Then a doctor observes the patient and then the doctor makes
a diagnosis. According to this diagnosis the patient is released (no illness or not
treatable) or a plan is made for further investigations (testing) or a therapy is
chosen. Each test or therapy has its own specific activities and according to the
outcomes and the plan, it is decided to continue with testing or a therapy, or
the patient goes back to the doctor for a new diagnosis, in which case the whole
process may be repeated. This process is graphically described in Fig. 2. Since
each activity is associated with a software function embodied in a module or
component, a trace through this process model is at the same time a test run
where we assume that if we call the software service associated with the action
we are able to see if the function is correct or not. We will return to this example
in Sect. 6 to illustrate a real application of our whole approach.

3 Modelling Framework for Testing

In this section, we introduce the basic definitions to be used in our test procedure.
We consider software systems consisting of a set of components running as a
sequential process. We use labelled transition systems, which can be seen as a
subclass of Petri nets, to model such process.

Definition 1 (Labelled Transition System). A labelled transition system
(LTS) is a triple L = (S, T, R), where

1. S is a non-empty finite set whose elements are called states,
2. T is a non-empty finite set whose elements are called transitions,
3. R ⊆ S×T×S is a ternary relation such that for all t ∈ T there exist s, s′ ∈ S

such that (s, t, s′) ∈ R,
4. there is exactly one state i ∈ S (called the initial state) such that there is no

triple (s, t, i) ∈ R,
5. there is at least one state f ∈ S (called final states) such that there is no

triple (f, t, s) ∈ R,
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Fig. 2. Generic medical workflow of a hospital

6. for any state s ∈ S there is a sequence (s1, t1, s2, . . . , sn, tn, sn+1) such that
(sk, tk, sk+1) ∈ R for all 1 ≤ k ≤ n, s1 = i, and sn+1 = s, i.e., any state is
reachable from the initial one.

When we do not want to specify the name of a transition we say that there
is an arc from s to s′, s, s′ ∈ S. Given an LTS, for all s ∈ S we define
•s = {u ∈ S | ∃t ∈ T : (u, t, s) ∈ R} and s• = {v ∈ S | ∃t ∈ T : (s, t, v) ∈ R}
as the preset and the postset of s, respectively. A path in an LTS is either the
empty sequence, denoted by ε, or a sequence p = (s1, t1, . . . , sn, tn, sn+1) such
that for all 1 ≤ k ≤ n, (sk, tk, sk+1) ∈ R. A subpath of a path p is a subsequence
p′ of p starting and ending with a state. A path p is said to be linear if for all
sk, 1 < k < n + 1, it follows that | • sk| = |sk • | = 1. We say that a path
p=(s1, t1,. . . , sn, tn, sn+1) is a cycle if s1 = sn+1. An LTS is acyclic if it does
not contain cycles. An LTS is said to be a one-path LTS if |s • | = 1 for all
non-final states s.

The next step is to present the new concepts needed for our test purposes.
First we define what an error is. The main assumption is to represent software
components or modules as transitions that either behave correctly or have an
error. We define an error as a symbolic marking or labelling of a transition.

Definition 2 (Error). A symbolic marking of transitions in an LTS is a func-
tion M : T → {0, 1} such that
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M(t) =

⎧⎨⎩
1, if t is error marked

0, if t is error free

The set D = {t |M(t) = 1} is called error set.

This function is unknown to the tester and it is the result of a random process
(see Sect. 5). When an error is repaired, the marking of the transition at hand
is changed from 1 to 0. We assume that we do not introduce new errors during
the repair process and thus the number of errors in the system decreases as long
as the system is being tested.

In our model we discover an error if and only if we visit an error marked
transition. As soon as an error is discovered, it is repaired before we continue
testing. The error finding process consists of executing a path from the initial
state of the system to either a state with empty postset, to a repeated state or
to an error marked transition. We refer to this path as run.

Definition 3 (Run). Let L = (S, T, R) be an LTS with a unique initial state i.
A run σ in L is a path (i, t1, . . . , sn, tn, sn+1). A run is said to be successful if
sk = sj, for all k = j, 1 ≤ k ≤ n, 1 ≤ j ≤ n, M(tr) = 0, 1 ≤ r ≤ n, and either
|sn+1 • | = ∅ or there exists exactly one 1 ≤ k ≤ n such that sk = sn+1. A run
is said to be failure if sk = sj, for all k = j, 1 ≤ k ≤ n, 1 ≤ j ≤ n, M(tr) = 0,
for all 1 ≤ r < n, and M(tn) = 1. We denote by Σ the set of all runs in L.

We now define a special test procedure that can be regarded as a probability
distribution on the branching points of the LTS. We call it walking function.

Definition 4 (Walking Function). Let L = (S, T, R) be an LTS. A walking
function for L is a function w : T → [0, 1] such that for all non-final states
s ∈ S,

∑
t∈s•

w(t) = 1. We denote by W the set of all walking functions.

Note that each transition t in an LTS has exactly one incoming state s, thus the
sum in definition of walking function is well-defined. Initially all the transitions
are weighted with non-zero probabilities and therefore all the transitions are exe-
cutable. When the system is in a certain state the next transition to be executed is
chosen by a weighted random drawing based on the walking function. After each
successful run the walking function may be updated in order to produce a new
one. This new walking function assigns probability zero to some already executed
transitions so that for the next execution those transitions will not fire. Note that
a zero probability transition can also be considered as a non-existing transition.
The update of the walking function is done by the following procedure.

Definition 5 (Walking Function Update). Let L = (S, T, R) be an LTS. A
function U : W ×Σ → W such that if w(t) = 0 for some t ∈ T , then w′(t) = 0,
where U(w, σ) = w′, is called a walking function update (WFU) function for w.

Therefore, an update means that no transitions are added but transitions may
get blocked. A detailed description of both walking function and WFU function
as well as a proof of exhaustiveness for the test procedure are given in Sect. 4.
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Since exhaustive testing is not always feasible in practice, we need to define
a stopping criterion that allows us to stop before we have tested all transitions.

Definition 6 (Stopping Set). Let H = {0, 1}∗ be the set of all finite sequences
of 0 and 1. If ≺ denotes the proper prefix relation, a set A ⊂ H is a stopping
set if and only if

1. for all a, b ∈ A we have ¬(a ≺ b),
2. for all h ∈ H there exists a ∈ A such that h ≺ a ∨ a ≺ h.

A procedure determining a stopping set is called stopping rule.

Note that the first condition states that when a sequence that stops the procedure
is found, that sequence is not continued. The second condition states that any
sequence has a stopping moment either in the past or possibly in the future.
In Sect. 5 we define concrete stopping sets for our test procedure. Our test
procedure consists basically of four steps: collecting tested transitions, keeping a
record of the error marked transitions encountered during testing, updating the
LTS by using a WFU function and defining a stopping rule.

4 Walking Strategy

In this section, we first describe a general WFU and then a more efficient update
for a special subclass of LTS. After each successful run, we want to increase the
probability of visiting new transitions. For that reason, for the next run we
discard some already visited parts of the LTS, in such a way that the reduced
system remains an LTS. We show that after a finite number of updates all the
transitions are visited, so that the updating procedure is exhaustive. At the end
of this section we compare the two algorithms for acyclic LTS.

4.1 Walking Function Update for Labelled Transition Systems

First we give an informal description of a WFU function for LTS and successful
runs. Let L = (S, T, R) be an LTS with walking function w. If L is a one-path
LTS, then we stop after the first successful run since we reach the final state.
Therefore, we assume that our system is not one-path. Given a successful run
σ = (i, t1, . . . , sn, tn, sn+1) in L we look for the last state, say sk, in the sequence
σ with at least two outgoing arcs. Since L is not a one-path LTS such a state
always exists. Note that sn+1 is either a state with no outgoing arcs or a state
that we encounter twice in σ. We update w to a new walking function w′ by
setting w′(tk) = 0. With this we avoid to run tk the next time we reach sk.
We do the same for transitions after tk until we reach a state with more than
one incoming transition if any. The formal description of the WFU function is
given in Algorithm 1. An example of the application of the WFU function is
described in Fig. 3. Suppose that (s0, t0, s1, t1, s2, t2, s1) is a subpath of a suc-
cessful run σ in L. We update w by setting w′(t2) = 0 since s2 is the last state in
σ with more than one outgoing arc. Note that this is equivalent to removing t2
from L.
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Algorithm 1. WFU Function for an LTS and a Successful Run
input : L = (S, T, R), σ = (s0, t0, s1, t1, . . . , tn, sn+1), w
output: w′ = U(w, σ)

Var tail : Int1

Var s : Int → S
Var w′ : T → [0, 1]
begin

s0 := i; tail := n; w′ := w2

while (tail ≥ 0) ∧ (|stail • | ≤ 1) do
tail := tail − 13

end4

while (tail ≤ n ∧ | • stail| = 1) do5

w′(ttail) := 0, tail := tail + 16

end7

end8

s0 s1t0 t1

t2

s2

Fig. 3. LTS with a cycle. We remove t2.

4.2 Validity of the Walking Function Update

We now study the validity of the update procedure. The next result shows that
the resulting system after updating w remains an LTS.

Definition 7 (Reduced System). Let L = (S, T, R) be an LTS with WFU
function U . Let w and σ be a walking function for L and a successful run,
respectively. The reduced system L′ w.r.t. w′ = U(w, σ) is the triple (S′, T ′, R′)
such that T ′ = {t ∈ T | w′(t) > 0}, S′ = S\ {s ∈ S | •s ⊂ T̃ ∧ s• ⊂ T̃}, where
T̃ = {t ∈ T | w′(t) = 0}, and R′ = R ∩ (S′ × T ′ × S′).

Theorem 1. Let L = (S, T, R) be an LTS with WFU function U as defined by
Algorithm 1. If w is a walking function for L, then for any successful run σ in
L there exists at least one transition t in σ such that U (w, σ) (t) = 0. Moreover,
the reduced system L′ w.r.t. U and w remains an LTS and after a finite number
of updates we test all transitions.

Proof. If L is a one-path LTS, then after a successful run we stop our procedure
and we do not update w. Assume that L is not one-path and denote by σ =
(i, t0, s1, . . . , tn, sn+1) a successful run in L. Since L is not a one-path LTS, there
exists a state sk in σ, with 0 ≤ k ≤ n, such that |sk • | > 1. According to
Algorithm 1 we choose the last state in the sequence σ with more than one
outgoing arc. We can assume without loss of generality that sk is such a state.
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s0 s1t0 t1

t3

s2 t2 s3

s4

Fig. 4. Failure run in an LTS. The WFU function cannot be applied.

We consider the path p = (sk, tk, sk+1, . . . , tn, sn+1). Therefore, we update w
by setting w′(tk) = 0. We now prove that the reduced system, denoted by L′,
remains an LTS. It suffices to verify that every state x not in p is reachable from
the initial one. Note that x is also a state in L′ and there exists a path v from
i to x in L. If p and v have no states in common, then v is also a path in L′

and we are done. Now assume that p and v have at least one state in common.
Suppose first that |sn+1 • | = 0. Obviously x is not reachable from sn+1 and
since sk is the last state with two outgoing arcs in σ, sk is the only common
state of p and v. Therefore, v is a path from i to x via sk but not via tk. Thus, v
is also a path in L′. Suppose now that |sn+1 • | > 0, i.e., sn+1 is observed twice
in σ. If sk is also in v, then two cases are possible. Either v is a path from i
to x via sk but not via tk, in which case v is also a path in L′, or v is a path
from i to x via tk which means (since sk is the last state in σ with two outgoing
arcs) that v passes through sn+1. Therefore, there exists a path v′ from i to x
via sn+1 that is also a path in L′. Finally, if sk is not in v, then there exists l
with k + 1 ≤ l ≤ n + 1, such that (sl, tl, . . . , tn, sn+1) is a subsequence of both
p and v. In any case, sn+1 is also a state in v. Hence, there exists a path v′ in
L′ from i to x via sn+1. For the last statement recall that we discard at least
one transition after a successful run. Failure runs may not reduce L, but since
the number of error marked transitions is finite, after a finite number of runs we
visit all the transitions and thus an exhaustive procedure is defined. �

Note that σ must be a successful run, otherwise Theorem 1 is not true. This is
illustrated in Fig. 4. Suppose that (s0, t0, s1, t1, s2) is a subpath of a failure run
σ in L. According to Algorithm 1, we would update the walking function w by
setting w′(t1) = 0. However, the reduced system would not be an LTS anymore
because t2 would be unreachable.

4.3 Walking Function Update for Acyclic Workflow Transition
Systems

We now present a more efficient WFU function update for a special subclass of
LTS. Since this subclass is in fact a special class of workflow Petri nets, we call
it workflow transitions systems (WTS).

Definition 8 (Workflow Transition System). A workflow transition system
(WTS) is an LTS with the additional requirements that there is a unique final
state f and that for every state s = f there is a path from s to f .
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Algorithm 2. WFU Function for an Acyclic WTS and a Successful Run
input : L = (S, T, R), σ = (s0, t0, s1, t1, . . . , tn, sn+1), w
output: w′ = U(w, σ)

Var head; current : Int1

Var s : Int → S
Var w′ : T → [0, 1]
begin

s0 := i; sn+1 := f ; head := 0; current := 0; w′ := w2

while (current ≤ (n + 1)) do
while (| • scurrent| = 1) do3

if (|scurrent • | > 1) then4

head := current5

endif6

current := current + 17

end8

for (x = head to current)9

w(tx) := 0

end10

end11

Fig. 5. Acyclic WTS where s1 and s2 have only one outgoing arc. We remove t0.

We first give an informal description of the WFU function for acyclic WTS.
Let W = (S, T, R) be an acyclic WTS with walking function w. We assume that
W is not one-path since testing one-path WTS is also trivial. Given a successful
run σ in W we look for the first state, say s, in σ with at least two outgoing arcs.
Since W is not one-path such a state always exists. Setting s as a marker, called
“head”, we move forward through σ. If the next state has exactly one incoming
and one outgoing arc, then we move to the following state. If we reach a state,
say s′, with at least two outgoing arcs but only one incoming, then we set s′

as “head”. We continue the same procedure until we find a state, say s̃, with
at least two incoming arcs. Such a state always exists because there is exactly
one final state, there are no cycles and the final state can be reached from any
other state. We update w to a new walking function w′ by setting w′(t′) = 0,
where t′ is any transition in σ between s′ and s̃. Therefore, we avoid to run
again the sequence comprised between t′ and t̃ the next time we reach s′. When
this update has been done we continue moving forward through σ looking for a
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Fig. 6. Acyclic WTS where s1 has only one outgoing arc and s2 has two outgoing arcs.
We remove t0 and t2.

bb

t0 s1t0t0 t1 s2t1 t2

s3

t4 s4 t3

t 5 

Fig. 7. Cyclic WTS. The WFU function cannot be applied.

new “head” and applying the same procedure until we reach the final state f .
Note that the workflow property is guaranteed because of acyclicity. The formal
description of this WFU function is given in Algorithm 2. An example of its
application is shown in Fig. 5. Suppose that (b, t0, s1, t1, s2, t2, e) is a subpath
of a successful run σ in W . We update w by setting w′(t0) = 0. Note that
this is equivalent to removing t0 from W . Similarly, in the situation illustrated
in Fig. 6, we update w by setting w′(t0) = 0 and w′(t2) = 0. If in both cases
(b, t3, s3, t4, e) was a subpath of σ, then we would update w by setting w′(t3) = 0
and w′(t4) = 0. Note that the update procedure is valid only for an acyclic
WTS. Suppose that (b, t0, s1, . . . , s4, t4, b) is a cycle as it is shown in Fig. 7,
and subpath of σ. According to Algorithm 2 we would update w by setting
w′(t0) = 0. However, the reduced system is not a WTS anymore because t5
would be unreachable.

4.4 Validity of the Walking Function Update for Acyclic WTS

Similarly to the general case, we now study the validity of the procedure for
an acyclic WTS. Reduced WTS are defined in a similar way as in Definition 8,
therefore we skip a formal definition here.

Theorem 2. Let W = (S, T, R) be an acyclic WTS with WFU function U as
defined by Algorithm 2. If w is a walking function for W , then for a successful
run σ in W there exists at least one transition t in σ such that U (w, σ) (t) = 0.
Moreover, the reduced system W ′ w.r.t. U and w remains a WTS and after a
finite number of updates we visit all transitions.
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s0 s1t0 t1

t3

s2 t2

t 4 

f

Fig. 8. Acyclic WTS. Transitions t1 and t2 are removed by Algorithm 2. Only t2 is
removed by Algorithm 1.

Note that the update procedure may be applied several times moving forward
through a successful run until the final state is reached. However, we present a
proof for the case where the system is reduced only once. Given this proof, the
proof for multiple reductions is straightforward.

Proof. If W is a one-path WTS, then after a successful run we stop our procedure
and we do not update w. Assume that W is not a one-path WTS and denote by
σ = (i, t0, s1, . . . , tn, f) a successful run in W . Since W is not a one-path WTS,
there exists a state sk in σ, with 0 ≤ k ≤ n, such that |sk • | > 1. We can assume
without loss of generality that sk is the “head” marker in Algorithm 2 and sl,
with k < l ≤ n, be the first state in σ after sk with more than one incoming
arc. We consider the path p = (sk, tk, sk+1, . . . , tl−1, sl). Note that p is a linear
subpath of σ. Therefore, we update w by setting w′(tk) = · · · = w′(tl−1) = 0.
We now prove that the reduced system, denoted by W ′, remains a WTS. Since
we do not introduce new transitions, it is enough to verify the existence of paths
to f . Consider an arbitrary state x in W that is not in p. Therefore, x is also
a state in W ′ and there exists a path v from i to x and from x to f in W . If
p is not a subpath of v, then v is also a path in W ′ and we are done. Suppose
now that p is a subpath of v. Either p is a subpath from i to x or from x to f .
Suppose that it is a subpath from i to x. Since p is a linear path and passes via
sl to x and | • sl| > 1, there exists at least another path from i to sl such that p
is not a subpath of it (due to acyclicity). Assume now that p is a subpath from
x to f . Since |sk • | > 1 there exists at least another path from sk to f such that
p is not a subpath of it (again due to acyclicity). Therefore, W ′ is a WTS. The
final statement follows as in the proof of Theorem 1. �

4.5 Algorithm Comparison

We now illustrate with a simple example the advantage of using Algorithm 2 for
acyclic WTS. We have shown in Sect. 4.2 that Algorithm 1 is valid for general
LTS. Therefore, if we do not have any information about whether the system
is acyclic or not we apply Algorithm 1. However, if we know that the system is
an acyclic WTS it is more efficient to use Algorithm 2 since after a successful
run it reduces at least the same number of transitions as Algorithm 1. This is
depicted in Fig. 8. Suppose the path σ = (i, t0, s1, t1, s2, t2, f) is a successful
run. According to Algorithm 1 we update the walking function w by setting
w′(t2) = 0, i.e., the system is reduced by one transition. Nevertheless, if we
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apply Algorithm 2, then we update w by setting w′(t1) = 0 and w′(t2) = 0,
reducing thus the system by two transitions.

5 Statistical Release Procedure

In Sect. 4 we have presented a procedure based on the structure of the net that
allows for exhaustive testing. When exhaustive testing is not feasible in practice,
statistical procedures must be considered. We propose a statistical release proce-
dure that only makes use of the information collected during the walking phase,
namely the total number of transitions in an LTS, the number of distinct tested
transitions and the number of tested error marked transitions, denoted by N ,
n and s, respectively. We assume that each transition is independently marked
as an error with probability θ. Therefore, if L = (S, T, R) denotes an LTS and
N = |T |, then the (unknown) total number of error marked transitions in L,
denoted by D, is binomially distributed with parameters N and θ. Our stopping
rule determines the probability of having at most k remaining errors when we
decide to stop testing. Thus, if we fix k and a confidence level 1−α, our problem
consists of visiting the minimal number of transitions such that the probabil-
ity of having at most k remaining errors is greater than or equal to 1 − α. We
study two approaches to this problem according to the chosen point of view in
statistics: one based on classical statistics (frequentist approach) and one based
on Bayesian statistics. At the end of the section we carry out a comparison be-
tween the two approaches in order to establish our preference for the Bayesian
approach when we present a practical application of our procedures in Sect. 6.

5.1 Frequentist Approach

This is the classical estimation problem approach in statistics. We must provide
point estimates of the parameters and also confidence intervals. Since D is bino-
mially distributed with parameters N and θ, the Maximum Likelihood estimate
of θ is given by θ̂ = s/n. The highest estimated value for θ is the upper bound

of its one-sided confidence interval and it is given by θu = θ̂ + zγ

√
θ̂(1− θ̂)/n,

where zγ is the γ-quantile of the standard normal distribution. Therefore, the
probability of having at most k remaining errors should be calculated using θu

in order to have the best reliability. Hence, for a fixed α, our problem consists
of calculating the minimal value of n such that

P [s ≤ D ≤ s + k | θu] =
s+k∑
d=s

(
N

d

)
(θu)d(1 − θu)N−d ≥ 1− α . (1)

Thus, A = {x ⊂ H | P [s ≤ D ≤ s + k | θu] ≥ 1− α} is a stopping set according
to Definition 6, since as n increases to N (and thus s increases to d) the prob-
ability P [s ≤ D ≤ s + k | θu] will always tend to 1. Thus, the stopping criterion
will always be met.
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5.2 Bayesian Approach

In this approach, we consider the error probability as a random variable Θ with
a prior distribution function FΘ(θ). Denote by X = (X1, . . . , Xn) the output of
the n tested transitions (error free or error marked) and let x = (x1, . . . , xn) be
their realizations. In this case, for a fixed α, we want to calculate the minimal
value of n such that

P [s ≤ D ≤ s + k|X = x] =
s+k∑
d=s

P [D = d|X = x] ≥ 1− α . (2)

Application of the Bayes rule and the law of total probability yields

P [D = d|X = x] =
P [X = x | D = d]

∫ 1

0
P [D = d|Θ = θ] fΘ (θ) dθ∫ 1

0
P [X = x|Θ = θ] fΘ (θ) dθ

. (3)

To calculate the probabilities in (3) note that P [X = x|D = d] is the result of a
hypergeometric experiment where the order is taken into account, the random
variable D|Θ=θ is binomially distributed with parameters N and θ and finally
P [X = x|Θ = θ] is the result of a binomial experiment where the order is taken
into account. Substitution in (3) yields

P [D = d|X = x] =
(

N − n

d− s

) ∫ 1

0
θd(1− θ)N−dfΘ(θ) dθ∫ 1

0
θs(1− θ)n−sfΘ(θ) dθ

. (4)

Since (2) can be computed, A = {x ⊂ H|P [s ≤ D ≤ s + k|X = x] ≥ 1− α} is
a stopping set according to Definition 6. Note that as long as we observe x
the posterior distribution of Θ can be computed (since we only need n and
s). We can use the posterior distribution of Θ to update the prior in order to
compute again (4), and so do (2). This procedure of collecting data and updating
the distribution of Θ can be done in several stages, defining a fully sequential
procedure. Note that in contrast to the binomial approach, the Bayesian rule
can also be computed in case that s = 0. Moreover, in the next subsection
we illustrate with a simple example why the Bayesian rule is preferred to the
binomial rule also in case that s = 0.

5.3 Comparison

We now compare the binomial and the Bayesian stopping rules. We assume that
Θ has a prior uniform distribution on the interval (0, 1) since we assume total
ignorance about possible values of θ. Note that if we had some prior knowledge
about the parameter, this should be reflected in the prior distribution. For ex-
ample, if we knew that the mean is concentrated about a certain value µ, then
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Table 1. Values of k (remaining error marked transitions) obtained using the Bayesian
and the binomial stopping rules for n (tested transitions) and s (tested error marked
transitions) given, when N = 3, 000 (total number of transitions), 1 − α = 0.95 (confi-
dence level of the stopping procedure) and 1 − γ = 0.99, 0.95, 0.90 (level at which the
confidence intervals for θ are calculated)

n s Bayesian BN (γ = 0.01) BN (γ = 0.05) BN (γ = 0.1)
500 5 55 69 59 54

1, 000 12 42 61 53 49
1, 500 16 27 46 40 37
2, 000 19 17 36 31 28
2, 500 21 8 27 23 22

one typical choice for prior distribution in Bayesian statistics is the Beta distri-
bution with expected value µ. In the following example we consider a large LTS
consisting of N = 3, 000 transitions. We compare the Bayesian and the binomial
stopping rules when the confidence level of the stopping procedure denoted by
1 − α, equals 0.95. Note that for the binomial rule it is also necessary to fix
the level 1 − γ at which the confidence intervals for the error probability θ are
calculated. We have chosen 0.01, 0.05 and 0.1 as typical values of γ. For some
given values of the number of distinct tested transitions n and the number of
tested error marked transitions s, the minimal number of remaining error marked
transitions k needed to meet the stopping condition is shown in Table 1.

Note that γ does not play a fundamental role in the choice between the bi-
nomial and the Bayesian rule since the Bayesian rule performs better in general
(especially in later stages of testing). This and the fact that only the Bayesian
stopping rule is suitable in case we do not observe any errors during testing
(s = 0), lead us to choose the Bayesian instead of the binomial rule for our
calculations in the next section.

6 Application

In this section, we illustrate our approach with a real example using the model
of the generic medical workflow of a hospital presented in Sect. 2. Although the
net used in this example is small, it is enough to illustrate the whole procedure
(random exhaustive testing, exhaustive testing using the reduction rules and the
application of the statistical stopping rule) and to show how the approach will
work in large cases.

The experiments carried out consist of the following. We have uniformly dis-
tributed five errors over the net, i.e., we have given a special label to five tran-
sitions in the net and all the transitions have the same probability of having
this label. Note that this is a fairly high number of errors considering the total
number of transitions of the net (22). We want to compare exhaustive random
testing with our reduction procedure and to study the behaviour of the stopping
rules. By exhaustive random testing we mean that the net is subjected to series
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Table 2. Mean number of runs, standard deviation of runs and mean number of errors
left comparing random testing and our reduction procedure for four different stopping
rules: Error free (all the errors are discovered), Exhaustive (all the transitions are
tested), Stop 0.90 and Stop 0.95 (the probability of having at most one remaining
error is 0.90 and 0.95, respectively)

Number of runs Errors left
Mean Std. dev. Mean

Reduction Random Reduction Random Reduction Random
Error free 13.25 35.40 1.75 20.25 – –
Exhaustive 15.60 52.75 1.24 22.02 – –
Stop (0.90) 12.75 32.25 1.33 12.00 0.60 0.45
Stop (0.95) 14.15 37.95 1.42 14.03 0.35 0.25

of runs from the initial state to either an error marked transition (failure run) or
to the final state (successful run). On the other hand, exhaustive testing using
our procedure consists of performing series of runs on the net according to Defi-
nition 3 and applying Algorithm 1 (although it is a WTS it is not acyclic) after
each successful run. In both cases the choices at the branch points are made at
random and we stop testing when we have tested all the transitions at least once.
We have performed 20 paired experiments using exhaustive random testing and
our reduction rules. Paired means here that the distribution of the errors is fixed
beforehand and two experiments, one using random testing and one using our
procedure, are performed for the same error configuration. We have recorded the
number of runs needed to discover all the errors and the number of runs needed
to reach exhaustiveness. We have also calculated when our stopping rule advises
us to stop testing, in case that the probability of having at most one remaining
error is 0.90 and 0.95. Finally we have also computed the number of errors left
due to an early stop. The results using random exhaustive testing and our ex-
haustive test procedure are shown in Table 2. Note that the runs to error free
are only possible in the experiment but not in reality since the number of errors
in the system is unknown. We can extract two main conclusions from Table 2:

– The reduction algorithm is efficient: the algorithm is reducing exhaustive
search in approximately 30%.

– The stopping rules are efficient: the stopping rules stop testing almost at the
same level of error freeness. However, they have a small error, namely the
remaining number of errors (on average 0.35 and 0.25 for the 0.95 rule and
0.60 and 0.45 for the 0.90 rule). Moreover, the stopping rules are reducing
exhaustive search in about 40%. Note that the decrease in test effort due to
the 0.90 stopping rule has the disadvantage of the increase of the average
number of errors left.

The efficiency of the reduction algorithm and the stopping rules can be statis-
tically supported via hypothesis testing. Let us consider the following random
variables:
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– X1 =“number of runs to reach error freeness using our reduction algorithm”
– X2 =“number of runs to stop testing using the 0.90 stopping rule and our

reduction algorithm”
– X3 = “number of runs to stop testing using the 0.95 stopping rule and our

reduction algorithm”
– X4 = “number of runs to reach error freeness using random testing”
– X5 =“number of runs to stop testing using the 0.90 stopping rule and random

testing”
– X6 = “number of runs to stop testing using the 0.95 stopping rule and

random testing”
– X7 = “number of runs to exhaustiveness using random testing”
– X8 = “number of runs to exhaustiveness using our reduction algorithm”

Since the observations are collected in pairs, to statistically quantify the per-
formance of our stopping rules and our reduction algorithm we perform the
following two sample paired tests:

1. H0 : Expected value of X2−Expected value of X1 = 0
2. H0 : Expected value of X3−Expected value of X1 = 0
3. H0 : Expected value of X5−Expected value of X4 = 0
4. H0 : Expected value of X6−Expected value of X4 = 0
5. H0 : Expected value of X7−Expected value of X8 = 0

Note that to give a statistical proof of the efficiency of the stopping rules we
have to test from Tests, 1 to 4 to cover all possible combinations (stopping rules
0.90 and 0.95, random testing and testing using our reduction procedure). In
case we do not reject these null hypotheses we can conclude that the expected
performance of the stopping procedure is at the level of error freeness with
certain statistical confidence. On the other hand, to measure the efficiency of
our algorithm we have to compare the runs to exhaustive testing using random
testing and our reduction technique, i.e., we perform Test 5. In case we reject this
null hypothesis we can quantify with certain statistical confidence the average
improvement of the algorithm (in terms of testing effort) with respect to random
testing. We have carried out such tests using all the collected data and the results,
given in 95% confidence intervals, yield to not reject the null hypotheses for all
the first four tests and rejection of the null hypothesis for Test 5. These results
confirm with high reliability (95% confidence) our intuition from what we had
observed in Table 2: the efficiency of the stopping rules, since on average they
require the same test effort needed to find all the errors, and the efficiency of the
reduction algorithm, since on average less test effort than with random testing
is required to reach exhaustiveness.

7 Conclusion and Future Work

We have presented a test procedure for software systems consisting of a set
of components running as one sequential process. Such software systems are
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modelled as labelled transition systems. We have defined an exhaustive procedure
that uses the knowledge of the structure of the system and the results of prior
testing. However, since exhaustive testing is not always feasible in practice, we
have presented a statistical stopping criterion consisting of accepting with certain
confidence a maximum number of remaining errors in the system. We have shown
the efficiency of both the testing and the stopping procedures in comparison with
random testing.

There are many natural extensions to this work. We are mainly interested in
studying similar procedures for concurrent systems instead of sequential ones.
We will consider errors located in the direction of the arcs or in the states, or
that they are input dependent, meaning that for one input the transition can
show an error but for another input the transition functions correctly. We can
also introduce different kind of errors or correlations between them. Restarting
the run not from the initial state but from the error marked transition is also a
possible extension. These extensions must be also statistically modelled in order
to define new statistical release procedures.

Acknowledgments. We gratefully acknowledge the insightful remarks and sug-
gestions of the reviewers, which led to a substantial improvement of this paper.
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Abstract. State spaces are commonly used representations of system
behavior. A state space may be derived from a model of system behavior
but can also be obtained through process mining. For a good under-
standing of the system’s behavior, an analyst may need to assess the
state space. Unfortunately, state spaces of realistic applications tend to
be very large. This makes this assessment hard. In this paper, we tackle
this problem by combining Petri-net synthesis (i.e., regions theory) and
visualization. Using Petri-net synthesis we generate the attributes needed
for attribute-based visualization. Using visualization we can assess the
state space. We demonstrate that such an approach is possible and de-
scribe our implementation using existing tools. The only limiting factor
of our approach is the performance of current synthesis techniques.

Keywords: state spaces, visualization, attributes, Petri-net synthesis.

1 Introduction

State spaces are popular for the representation and verification of complex sys-
tems [7]. System behavior is modeled as a number of states that evolve over time
by following transitions. Transitions are “source-action-target” triplets where the
execution of an action triggers a change of state. By analyzing state spaces more
insights can be gained into the systems they describe.

In many cases, state spaces can be directly linked to a model that has some
form of formal/executable semantics (e.g. Petri nets, process algebras, state
charts, EPCs [20], UML-ADs [17], MSCs [18], BPEL [6], YAWL [2], etc.). If
such a model does not allow for a more direct analysis, the state space allows
for a “brute force” analysis by considering all states and transitions. However,
many state spaces cannot be linked to some formal model, either because the
formal model is not available for some reason, or because the formal model does
not exist at all. As examples of the latter, the state space may be based on the
analysis of program code, the merging of different low-level models, or as the
result of process mining [1,4]. Although the approach presented in this paper is
generic, we will devote special attention to state spaces obtained through process
mining, as we think that especially in the process mining area our approach looks
promising.

K. Jensen, W. van der Aalst, and J. Billington (Eds.): ToPNoC I, LNCS 5100, pp. 152–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Assessing State Spaces Using Petri-Net Synthesis 153

Process mining techniques are applicable to a wide range of systems. These
systems may be pure information systems (e.g. ERP systems) or systems where
the hardware plays a more prominent role (e.g. embedded systems). The only
requirement is that the system produces event logs, thus recording (parts of) the
actual behavior. An example is the “CUSTOMerCARE Remote Services Net-
work” of Philips Medical Systems (PMS). This is a worldwide internet-based
private network that links PMS equipment to remote service centers. Any event
that occurs within an X-ray machine (e.g. moving the table, setting the de-
flector, etc.) is recorded and analyzed. Another example is the Common Event
Infrastructure (CEI) of IBM. CEI offers a unified way of storing events in the
context of middleware and web services. Using CEI it is possible to record all
kinds of business events. Process mining techniques are then used to discover
models by analyzing these event logs. An example is the α-algorithm, which
constructs a Petri net model describing the behavior observed in the event log
[5]. However, most techniques that directly discover models from event logs have
a “model bias” and tend to either overgeneralize or produce incorrect results
(e.g. a model with deadlocks). Therefore, several approaches do not try to con-
struct the model directly, but construct a state space first. Classical approaches
stop when the state space is constructed [9] while more recent approaches use
multiple steps to obtain a higher level model [3,24].

State spaces tend to be very large. The state explosion problem is well-known,
especially in the presence of concurrency. Therefore, many researchers try to
reduce the state space or handle it more efficiently. Nevertheless, the most pop-
ular analysis approach is still to specify and check requirements by inspecting
the state space, e.g. model checking approaches [12]. For this approach to be
successful, the premise is that all requirements are known. When this is not the
case, the system cannot be verified.

In such cases, one approach is to directly inspect the state space with the
aim of gaining insight into the behavior it describes. Interactive visualization
provides the user with a visual representation of the state space and with con-
trols to change this view, i.e., through interaction the user can take different
perspectives on the state space. We argue that interactive visualization offers
three advantages:

1. By giving visual form to an abstract notion, communication among analysts
and with other stakeholders is enhanced.

2. Users often do not have precise questions about the systems they study, they
simply want to “get a feeling” for their behavior. Visualization allows them
to start formulating hypotheses about system behavior.

3. Interactivity provides the user with a mechanism for analyzing particular
features and for answering questions about state spaces and the behavior
they describe.

Attribute-based visualization enables users to analyze state spaces in terms of at-
tributes associated with every state [23]. Users typically understand the meaning
of this data and can use this as a starting point for gaining further insights. For
example, by clustering on certain data, the user can obtain a summary view
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on the state space, where details on the non-clustered data have been left out.
Based on such a view, the user can come to understand how the system behaves
with respect to the clustered data.

Attribute-based visualization is only possible if states have meaningful at-
tributes. When the model is obtained through process mining this is not the
case. Event logs typically only refer to events and not to states. Therefore, state
spaces based on event logs do not provide intuitive descriptions of states other
than the actions they relate to. Hence, the challenge is to generate meaningful
attributes. In this paper we investigate the possibility of automatically deriving
attribute information for visualization purposes. To do so, we use existing syn-
thesis techniques to generate a Petri net from a given state space [10,13,14,21,22].
The places of this Petri net are considered as new derived state attributes.

The remainder of the paper is structured as follows. Section 2 provides a
concise overview of Petri nets, the Petrify tool, the DiaGraphica tool, and the
ProM tool. The Petrify tool implements the techniques to derive a Petri net
from a state space, DiaGraphica is an attribute-based visualization tool, while
the ProM tool implements process mining techniques and provides the neces-
sary interoperability between the tools. Section 3 discusses the approach using
both Petrify and DiaGraphica. Section 4 shows, using a small example, how the
approach works, whereas Sect. 5 discusses the challenges we faced while using
the approach. Finally, Sect. 6 concludes the paper.

2 Preliminaries

2.1 Petri Nets

A classical Petri net can be represented as a triplet (P, T, F ) where P is the set
of places, T is the set of Petri net transitions1, and F ⊆ (P ×T )∪(T×P ) the set
of arcs. For the state of a Petri net only the set of places P is relevant, because
the network structure of a Petri net does not change and only the distribution of
tokens over places changes. A state, also referred to as a marking, corresponds
to a mapping from places to natural numbers. Any state s can be presented as
s ∈ P → {0, 1, 2, . . .}, i.e., a state can be considered as a multiset, function, or
vector. The combination of a Petri net (P, T, F ) and an initial state s is called
a marked Petri net (P, T, F, s). In the context of state spaces, we use places as
attributes. In any state the value of each place attribute is known: s(p) is the
value of attribute p ∈ P in state s.

A Petri net also comes with an unambiguous visualization. Places are repre-
sented by circles or ovals, transitions by squares or rectangles, and arcs by lines.
Using existing layout algorithms, it is straightforward to generate a diagram for
this, for example, using dot [15].
1 The transitions in a Petri net should not be confused with transitions in a state space,

i.e., one Petri net transition may correspond to many transitions in the corresponding
state space. For example, many transitions in Fig. 2 refer to the Petri net transition
t1 in Fig. 3.
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Fig. 1. Translation of regions to places

2.2 Petrify

The Petrify [11] tool is based on the classical Theory of Regions [10,14,22]. Using
regions it is possible to synthesize a finite transition system (i.e., a state space)
into a Petri net.

A (labeled) transition system is a tuple TS = (S, E, T, si) where S is the set
of states, E is the set of events, T ⊆ S × E × S is the transition relation, and
si ∈ S is the initial state. Given a transition system TS = (S, E, T, si), a subset
of states S′ ⊆ S is a region if for all events e ∈ E one of the following properties
holds:

– All transitions with event e enter the region, i.e., for all s1, s2 ∈ S and
(s1, e, s2) ∈ T : s1 ∈ S′ and s2 ∈ S′; or

– All transitions with event e exit the region, i.e., for all s1, s2 ∈ S and
(s1, e, s2) ∈ T : s1 ∈ S′ and s2 ∈ S′; or

– All transitions with event e do not “cross” the region, i.e., for all s1, s2 ∈ S
and (s1, e, s2) ∈ T : s1, s2 ∈ S′ or s1, s2 ∈ S′.

The basic idea of using regions is that each region S′ corresponds to a place in
the corresponding Petri net and that each event corresponds to a transition in
the corresponding Petri net. Given a region all the events that enter the region
are the transitions producing tokens for this place and all the events that exit the
region are the transitions consuming tokens from this place. Figure 1 illustrates
how regions translate to places. A region r referring to a set of states in the state
space is mapped onto a place: a and b enter the region, c and d exit the region,
and e and f do not cross the region.

In the original theory of regions many simplifying assumptions are made, e.g.
elementary transitions systems are assumed [14] and in the resulting Petri net
there is one transition for each event. Many transition systems do not satisfy such
assumptions. Hence many refinements have been developed and implemented in
tools like Petrify [10,11]. As a result it is possible to synthesize a Petri net for
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Fig. 2. State space visualization with off-the-shelf graph-drawing tools
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Fig. 3. Petri net synthesized from the state space in Fig. 2

any transition system. Moreover, tools such as Petrify provide different settings
to balance compactness and readability and one can specify desirable properties
of the target model. For example, one can specify that the Petri net should be
free-choice. For more information we refer the reader to [10,11].

With a state space as input Petrify derives a Petri net for which the reachabil-
ity graph is bisimilar [16] to the original state space. We already mentioned that
the Petri net shown in Fig. 3 can be synthesized from the state space depicted
in Fig. 2. This Petri net is indeed bisimilar to the state space. For the sake of
completeness we mention that we used Petrify version 4.2 (www.lsi.upc.es/
petrify/) with the following options: -d2 (debug level 2), -p (generate a pure
Petri net), -dead (do not check for the existence of deadlock states), and -ip
(show implicit places).

2.3 DiaGraphica

DiaGraphica is a prototype for the interactive visual analysis of state spaces with
attributes and can be downloaded from www.win.tue.nl/∼apretori/
diagraphica/. It builds on a previous work [23] and addresses the gap between
the semantics that users associate with attributes that describe states and their

www.lsi.upc.es/
petrify/
www.win.tue.nl/~apretori/
diagraphica/
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Fig. 4. DiaGraphica incorporates a number of correlated visualizations that use para-
meterized diagrams

visual representation. To do so, the user can define custom diagrams that re-
flect associated semantics. These diagrams are incorporated into a number of
correlated visualizations.

Diagrams are composed of a number of shapes such as ellipses, rectangles and
lines. Every shape has a number of Degrees Of Freedom (DOFs) such as position
and color. It is possible to link a DOF with a state attribute, which translates
to the following in the context of this paper. Suppose we have a state space
that has been annotated with attributes that correspond to the markings of the
places in its associated Petri net. It is possible to represent this Petri net with
a diagram composed out of a number of circles, squares and lines corresponding
to its places, transitions and arcs. Now, we can parameterize a circle (place) in
this diagram by linking, for example, its color with the attribute representing
the marking of the corresponding places. As a result, the color of the circle will
reflect the actual marking of the corresponding place. For example, the circle
could be white if the place contains no tokens, green if it contains one token,
and red if it contains more than one tokens.

DiaGraphica has a file format for representing parameterized diagrams. This
facility makes it possible to import Petri nets generated with Petrify as diagrams.

Parameterized diagrams are used in a number of correlated visualizations.
As starting point the user can perform attribute based clustering. First, the
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user selects a subset of attributes. Next, the program partitions all states into
clusters that differ in terms of the values assumed for this subset of attributes.
The results are visualized in the cluster view (see Fig. 4a). Here a node-link
diagram, a bar tree and an arc diagram are used to represent the clustering
hierarchy, the number of states in every cluster, and the aggregated state space
[23]. By clicking on clusters they are annotated with diagrams where the DOFs
of shapes are calculated as outlined above. A cluster can contain more than one
state and it is possible to step through the associated diagrams. Transitions are
visualized as arcs between clusters. The direction of transitions is encoded by
the orientation of the arcs which are interpreted clockwise.

The user can also load a diagram into the simulation view as shown in Fig. 4b.
This visualization shows the “current” state as well as all incoming and outgoing
states as diagrams. This enables the user to explore a local neighborhood around
an area of interest. Transitions are visualized by arrows and an overview of all
action labels is provided. The user can navigate through the state space by
selecting any incoming or outgoing diagram, by using the keyboard or by clicking
on navigation icons. Consequently, this diagram slides toward the center and all
incoming and outgoing diagrams are updated.

The inspection view enables the user to inspect interesting diagrams more
closely and to temporarily store them (see Fig. 4c). First, it serves as a magni-
fying glass. Second, the user can use this view as a temporary storage facility.
Users may, for instance, want to keep a history, store a number of diagrams from
various locations in the state space to compare, or keep diagrams as seeds for
further discussions with colleagues. These are visualized as a list of diagrams
through which the user can scroll.

Diagrams can be seamlessly moved between different views by clicking on an
icon on the diagram. To maintain context, the current selection in the simulation
or inspection view is highlighted in the clustering hierarchy.

2.4 ProM

ProM is an open-source plug-able framework that provides a wide range of
process mining techniques [1,25]. Given event logs of different systems, ProM
is able to construct different types of models (ranging from plain state spaces
to colored Petri nets). Moreover, ProM can be used to convert models from
one notation into another, e.g. translate an Event-driven Process Chain (EPC)
[20] into a Petri net or a state space. ProM offers connections to Petrify and
DiaGraphica in various ways. For example, a state space mined by ProM can be
automatically converted into a Petri net by Petrify and then loaded into ProM
and DiaGraphica.

3 Using Petrify to Obtain Attributed States Described
by Attributes

The behavior of systems can be captured in many ways. For instance, as an
event log, as a formal model or as a state space. Typically, system behavior is
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Fig. 5. The approach proposed in this paper

not directly described as a state space. However, as already mentioned in the
introduction, it is possible to generate state spaces from process models (i.e.,
model-based state space generation) or directly from code or other artifacts.
Moreover, using process mining techniques [4,5] event logs can be used to con-
struct state spaces. This is illustrated in Fig. 5.

Both ways of obtaining state spaces are shown by the two arrows in the lower
left and right of the figure. The arrow in the lower right shows that using model-
based state space generation the behavior of a (finite) model can be captured
as a state space. The arrow in the lower left shows that using process mining
the behavior extracted from an event log can be represented as a state space [3].
Note that an event log provides execution sequences of a (possibly unknown)
model. The event log does not show explicit states. However, there are various
ways to construct a state representation for each state visited in the execution
sequence, e.g. the prefix or postfix of the execution sequence under consideration.
Similarly transitions can be distilled from the event log, resulting in a full state
space.

Figure 5 also shows that there is a relation between event logs and models,
i.e., a model can be used to generate event logs with example behavior and
based on an event log there may be process mining techniques to directly extract
models, e.g. using the α-algorithm [5] a representative Petri net can be discovered
based on an event log with example behavior. Since the focus is on state space
visualization, we do not consider the double-headed arrow at the top and focus
on the lower half of the diagram.

We make a distinction between event logs, models and state spaces that have
descriptive attributes and those that do not (inner and outer sectors of Fig. 5).
For example, it is possible to model behavior simply in terms of transitions
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without providing any further information that describes the different states
that a system can be in. Figure 2 shows a state space where nodes and arcs
have labels but without any attributes associated to states. In some cases it is
possible to attach attributes to states. For example, in a state space generated
from a Petri net, the token count for each state can be seen as a state attribute.
When a state space is generated using process mining techniques, the state may
have state attributes referring to activities or documents recorded earlier.

It is far from trivial to generate state spaces that contain state attributes
from event logs or models where this information is absent. Moreover, there
may be an abundance of possible attributes making it difficult to select the
attributes relevant for the behavior. For example, a variety of data elements
may be associated to a state, most of which do not influence the occurrence
of events. Fortunately, as the upward pointing arrow in Fig. 5 shows, tools like
Petrify can transform a state space without attributes into a state space with
attributes.

Consider the state space in Fig. 2. Since it does not have any state attributes,
we cannot employ attribute-based visualization techniques. When we perform
synthesis, we derive a Petri net that is guaranteed to be bisimilar to this state
space. That is, the behavior described by the Petri net is equivalent to that
described by the state space [11]. Figure 3 shows a Petri net derived using Petrify.

Note that the approach, as illustrated in Fig. 5, does not require starting
with a state space. It is possible to use a model or event log as a starting point.
Using process mining an event log can be converted into a state space [3,24]. Any
process model (e.g. Petri net) can also be handled as input, provided that its
state space can be constructed within reasonable time. For a bounded Petri net,
this state space is its reachability graph, which will be finite. The approach can
also be extended for unbounded nets by using the coverability graph. In this case,
s ∈ P → {0, 1, 2, . . .}∪{ω} where s(p) = ω denotes that the number of tokens in
p is unbounded. This can also be visualized in the Petri net representation. We
also argue that our technique is applicable to other graphical modeling languages
with some form of semantics, e.g. the various UML diagrams describing behavior.
In the context of this paper, we use state spaces as starting point because of the
many ways to obtain them (i.e., process mining, code analysis, model-based
generation, etc.).

4 Proof of Concept

To demonstrate the feasibility of our approach, we now present a small case
study, using the implementation of the approach as outlined above. Figure 6
illustrates the route we have taken in terms of the strategy introduced in Sect. 3.

4.1 Setting

The case study concerns a traffic light controller for the road intersection shown
in Fig. 7, which corresponds to an existing road intersection in Eindhoven, The
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Fig. 6. The approach taken with the case study

Netherlands. As Fig. 7 shows, there are 12 different traffic lights on the intersec-
tion, labeled A through L. Traffic light A controls the two southbound lanes that
take a right turn, whereas B controls the lane for the other directions; traffic
light C controls all three westbound lanes; and so forth.

The case study starts with a log for the traffic light controller. This log is free
of any noise and contains over 1,300,000 events without data attributes. Possible
event labels in the log are start, end, Arg, Bgy, and Cyr, which have to following
meaning:

start indicates that the controller has been started,
end indicates that the controller is about to stop,
Arg indicates that traffic light A has moved from red to green,
Bgy indicates that traffic light B has moved from green to yellow (amber), and
Cyr indicates that traffic light C has moved from yellow to red.

Figure 8 shows a small fragment of the log. It shows, that at some point in time,
traffic light H moved from green to yellow, after which B moved first from green
to yellow and then from yellow to red, and so forth.

A relevant question is whether the traffic light controller, according to the
log, has behaved in a safe way. From Fig. 7 it is clear, that traffic lights A, B,
and C should not all signal go (that is, show either green or yellow) at any given
moment in time. Traffic lights A and B could signal go at the same time, but
both are in conflict with C. Thus, if either A or B signal go, then C has to signal
stop (that is, show red). The goal of our case study is to show how we can use
our approach to answer the question whether the controller indeed has behaved
in a safe way.
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Fig. 7. A road intersection with traffic lights in Eindhoven

Fig. 8. A small fragment of the log visualized

4.2 Findings

Using process mining techniques, we constructed a state space from the event
log. Figure 9 shows a visualization of a fragment of the entire state space, which
contains 40,825 states and 221,618 edges. Note that this visualization does not
help us to verify that the controller behaved in a safe way. Also note that, as we
took a log as starting point, we cannot show that the controller will behave in a
safe way in the future.

From the above state space, we constructed a Petri net using Petrify. This
Petri net contains 26 transitions and 28 places and is shown in Fig. 10. As men-
tioned in Sect. 1, the place labels in the Petri net have no intuitive description.
Therefore, these labels can only be used to identify places. The transitions la-
bels, however, correspond one-to-one to the event labels that were found in the
original log.
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Fig. 9. A visualization of a fragment of the entire state space for the traffic light
controller
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Fig. 10. The synthesized Petri net for the traffic light controller
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Fig. 11. The synthesized Petri net fits the log

Next, we tested whether the constructed Petri net can actually replay all
instances present in the log. If some instance cannot be replayed by the Petri
net, then some actual behavior is not covered by the Petri net, and we cannot
make any claim that certain situations did not occur by looking at the Petri net
only. Figure 11 shows that the Petri net can actually replay all behavior which
is present in the log: Their fitness measure equals 1.0. Possibly, the Petri net can
generate behavior which is not in the log, but at least the Petri net covers the
behavior present in the log. As a result, we can use the Petri net to show that
certain situations did not occur in the traffic light controller: If the situation is
not possible according to the Petri net, it was not possible according to the log.

After having recreated the state space from the Petri net, which is guaranteed
to be bisimilar to the original state space (that is, the state space we derived
from the log), we can now use DiaGraphica to answer the question whether the
controller behaved in a safe way. From the Petri net, we learn that the places
p22, and p14 signal go for the traffic light A, p10 and p21 signal go for B, and
p23 and p16 for C. Figure 12 shows the state space after we have abstracted
from all places except the ones just mentioned. Note that the 40,825 states have
been clustered in such a way that only 11 clusters remain. As a result, we can
actually see some structure in this state space. For example, the rightmost cluster
in Fig. 12 shows clearly that the other places are empty if place p23 contains a
token. Thus, if traffic light C shows green, then A and B show red. Likewise, we
can now show that the controller behaved in a safe way for the other conflicts
as well. Figure 12 also shows the representation of the controller state using
the Petri net layout in the right bottom corner, and possible predecessor and
successor states. Using this, it is possible to navigate over individual states in the
state space.
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Fig. 12. Analyzing safeness using DiaGraphica

4.3 Conclusion

Using both process mining and Petri net synthesis techniques, we were able to
convert a log that contains no data attributes into a state space that does contain
data attributes: the synthesized places. Based on these attributes, we were able
to verify that, according to the log, the controller has behaved in a safe way.
Thus, in an automated way, we have been able to derive sensible attributes from
this log, and using these attributes we are able to deduce a meaningful result.

5 Challenges

In the previous section, we showed how attribute-based visualization assisted us
in providing new insights even if the corresponding state space is large. Given the
many ways of obtaining state spaces (e.g. through process mining), the applica-
bility and relevance of this type of visualization is evident. However, in order to
attach attributes to states, our approach requires the automatic construction of
a suitable Petri net.
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Fig. 13. A Petri net for the wafer stepper machine

Although the approach works well for some examples, we have found that
the synthesis of Petri nets from arbitrary state spaces can be a true bottle-neck.
The performance of current region-based approaches is poor in two respects: (1)
the computational complexity of the algorithms makes wide-scale applicability
intractable and (2) the resulting models are sometimes more complex than the
original transition systems and therefore offer little insight. One of the key points
is that synthesis works well if there is a lot of “true” and “full” concurrency. If
a and b can occur in parallel in state s1, there are transitions s1

a→ s2, s1
b→ s3,

s2
b→ s4, and s3

a→ s4 forming a so-called “diamond” in the state space. Such dia-
monds allow for compact Petri nets that provide additional insights. Tools such
as Petrify have problems dealing with large state spaces having “incomplete”
diamonds.

To illustrate the problem we revisit the state space shown in Fig. 4 [19]. This
state space contains 55,043 nodes and 289,443 edges and represents the behavior
of a wafer stepper. Although the initial state space was not based on a Petri net
model we discovered that it can be generated by the Petri net shown in Fig. 13.
The wafer stepper machine consists of four locks (L1 – L4), two rotating robots
(R1 and R2), a preparing station (Prep, and a processing station (Proc). Fresh
wafers start at the left (place fresh), are moved to the right, are prepared, are
processed, and are moved back to the left, where they end as processed wafers
(place done). The visualization by DiaGraphica shown in Fig. 4 is not based on
the Petri net depicted in Fig. 13, i.e., the state space was provided to us and the
visualization was based on existing attributes in the state space and the diagram
(cf. Fig. 4c) was hand-made based on domain knowledge.
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Fig. 14. A Petri net for the wafer stepper machine with only one wafer

Given the fact that DiaGraphica is able to nicely visualize the state space
and that there exists a Petri net with a bisimilar state space, we expected to be
able to apply the approach presented in this paper. Unfortunately, Petrify was
unable to derive a Petri net as shown in Fig. 13 from the given state space. As a
result, this state space could not be used to illustrate our approach. However, it
might be of interest to know why Petrify failed. In this section, we try to answer
this question. It should be noted that the problem is not specific for Petrify; it
applies to all region based approaches [8,10,13,14,21,22].

Our first observation is that the places fresh and done are not safe, which
might be a problem for Petrify. However, both places can be modeled in a
straightforward way using six safe places, and hence, there exists a safe Petri net
that corresponds to the given state space. Clearly, Petrify was unable to find
this Petri net.

Second, we reduced the number of wafers in the system from six to one, that
is, we generated a state space for the situation where only one wafer needs to
be processed by the wafer stepper. In this case, Petrify was able to construct
a suitable Petri net, which is shown in Fig. 14. This Petri net shows that the
single wafer is first moved to a lock (T2L), moved to a robot (L2R), rotated by the
robot (Rotate), moved to the preparing station (R2C), prepared (Prep), swapped
to the processing station (Swap), processed (Proc), swapped back, moved to the
robot, rotated by the robot, moved to the lock, and finally moved back onto the
tray. Note that the structure around the transitions Prep, Proc, and Swap takes
care of the fact that the wafer needs to be swapped both before and after the
processing step. Apparently, Petrify preferred this solution above having two
Swap transitions (like we have four Rotate transitions).

Having succeeded for one wafer, we next tried the same for two wafers. Petrify
did construct a Petri net for this situation, but, unfortunately, this Petri net is
too complex to be used.

Finally, we again tried the situation with two wafers, but with increased ca-
pacity for the robots, the preparing station, and the processing station. As a
result, the wafers need not to wait for a resource (such as a robot or a prepar-
ing station) as these will always be available. Clearly, the net as shown in Fig. 14
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corresponds to this system, where only its initial marking needs to be changed
(two wafers instead of one). Unfortunately, Petrify was unable to construct such
a net. Apparently, Petrify cannot generate a Petri net where multiple tokens
follow an identical route.

The experiment using variants of the state space shown in Fig. 4 illustrates
that classical synthesis approaches have problems when dealing with real-life
state spaces. Typically, the application of regions is intractable and/or results
in a Petri net of the same size as the original state space.

When applying synthesis approaches to state spaces generated through
process mining another problem surfaces; synthesis approaches assume that the
state space is precise and complete. However, the state space is based on an event
log that only shows example behavior. In reality logs are seldom complete in the
sense that all possible execution sequences are not necessarily included [5]. Con-
sider for example ten parallel activities. To see all possible interleaving at least
10! = 3,628,800 different sequences need to be observed. Even if all sequences
have equal probability (which is typically not the case) much more sequences
are needed to have some coverage of these 3,628,800 possible sequences. Hence,
it is likely that some possibilities will be missing. Therefore, the challenge is
not to create a Petri net that exactly reproduces the transition system or log.
The challenge is to find a Petri net that captures the “characteristic behavior”
described by the transition system.

If the system does not allow for a compact and intuitive representation in
terms of a labeled Petri net, it is probably not useful to try and represent the
system state in full detail. Hence more abstract representations are needed when
showing the individual states. The abstraction does not need to be a Petri net.
However, even in the context of regions and Petri nets, there are several straight-
forward abstraction mechanisms.

First of all, it is possible to split the sets of states and transitions into in-
teresting and less interesting. For example, in the context of process mining
states that are rarely visited and/or transitions that are rarely executed can
be left out using abstraction or encapsulation. There may be other reasons for
removing particular transitions, e.g. the analyst rates them as less interesting.
Using abstraction (transitions are hidden, i.e., renamed to τ and removed while
preserving branching bisimilarity) or encapsulation (paths containing particular
transitions are blocked), the state space is effectively reduced. The reduced state
space will be easier to inspect and allows for a simpler Petri net4 representation.

Another approach is not to simplify the state space but to generate a model
that serves as a simplified over-approximation of the state space. The complex-
ity of a generated Petri net that precisely captures the behavior represented by
the state space is due to the non-trivial relations between places and transi-
tions. If places are removed from such a model, the resulting Petri net is still
able to reproduce the original state space (but most likely also allows for more
and even infinite behavior). In terms of regions this corresponds to only in-
cluding the most “interesting” regions resulting in an over-approximation of
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the state space. Future research aims at selecting the right abstractions and
over-approximations.

6 Conclusions and Future Work

In this paper we have investigated an approach for state space visualization with
Petri nets. Using existing techniques we derive Petri nets from state spaces in
an automated fashion. The places of these Petri are considered as newly derived
attributes that describe every state. Consequently, we append all states in the
original state space with these attributes. This allows us to apply a visualization
technique where attribute-based visualizations of state spaces are annotated with
Petri net diagrams.

The approach provides the user with two representations that describe the
same behavior: state spaces and Petri nets. These are integrated into a number
of correlated visualizations. By presenting a case study, we have shown that the
combination of state space visualization and Petri net diagrams assists users in
visually analyzing system behavior.

We argue that the combination of the above two visual representations is
more effective than any one of them in isolation. For example, using state space
visualization it is possible to identify all states that have a specific marking for
a subset of Petri net places. Using the Petri net representation the user can
consider how other places are marked for this configuration. If we suppose that
the user has identified an interesting marking of the Petri net, he or she can
identify all its predecessor states, again by using a visualization of the state
space. Once these are identified, they are easy to study by considering their
Petri net markings.

In this paper, we have taken a step toward state space visualization with
automatically generated Petri nets. As we have shown in Sect. 4, the ability to
combine both representations can lead to interesting discoveries. The approach
also illustrates the flexibility of parameterized diagrams to visualize state spaces.
In particular, we are quite excited about the prospect of annotating visualizations
of state spaces with other types of automatically generated diagrams.

Finally, as indicated in Sect. 5, current synthesis techniques are not always
suitable: If no elegant Petri net exists for a given state space, then Petrify will
not be able to find such a net, and even if such a net exists, Petrify might fail
to find it. In such a situation, allowing for some additional behavior in the Petri
net, that is, by over-approximating the state space, might result in a far more
elegant net. For example, the net as shown in Fig. 14 would be an acceptable
solution for the wafer stepper state space containing six wafers. Furthermore, one
single “sick” trace in a state space might prevent the construction of a suitable
Petri net. Therefore, we are interested in automated abstraction techniques and
over-approximations of the state space. Of course, there’s also a downside: The
state space corresponding to the resulting Petri net is no longer bisimilar to the
original state space. Nevertheless, we feel that having an elegant approximation
is better than having an exact solution that is of no use.
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Goland, Y., Gúızar, A., Kartha, N., Liu, C.K., Khalaf, R., Koenig, D., Marin,
M., Mehta, V., Thatte, S., Rijn, D., Yendluri, P., Yiu, A.: Web Services Business
Process Execution Language Version 2.0 (OASIS Standard). WS-BPEL TC OASIS
(2007), http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

7. Arnold, A.: Finite Transition Systems. Prentice-Hall, Englewood Cliffs (1994)
8. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Re-

gions of Languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007)

9. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249
(1998)

10. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Synthesizing Petri Nets
from State-Based Models. In: Proceedings of the 1995 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD 1995), pp. 164–171. IEEE Com-
puter Society, Los Alamitos (1995)

11. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets
from finite transition systems. IEEE Transactions on Computers 47(8), 859–882
(1998)

12. Dams, D., Gerth, R.: Abstract interpretation of reactive systems. ACM Transac-
tions on Programming Languages and Systems 19(2), 253–291 (1997)

13. Darondeau, P.: Unbounded petri net synthesis. In: Desel, J., Reisig, W., Rozenberg,
G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 413–438.
Springer, Heidelberg (2004)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html


Assessing State Spaces Using Petri-Net Synthesis 171

14. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures - Part 1 and Part 2.
Acta Informatica 27(4), 315–368 (1989)

15. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.-P.: A technique for drawing
directed graphs. IEEE Transactions on Software Engineering 19(3), 214–230 (1993)

16. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. Journal of the ACM 43(3), 555–600 (1996)

17. Object Management Group. OMG Unified Modeling Language 2.0. OMG (2005),
http://www.omg.com/uml/

18. Harel, D., Thiagarajan, P.S.: Message sequence charts. In: UML for Real: Design of
Embedded Real-Time Systems, Norwell, MA, USA, pp. 77–105. Kluwer Academic
Publishers, Dordrecht (2003)

19. Hendriks, M., van den Nieuwelaar, N.J.M., Vaandrager, F.W.: Model checker aided
design of a controller for a wafer scanner. Int. J. Softw. Tools Technol. Transf. 8(6),
633–647 (2006)
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Abstract. The key to efficient on-the-fly reachability analysis based on
unfolding is to focus the expansion of the finite prefix towards the de-
sired marking. However, current unfolding strategies typically equate to
blind (breadth-first) search. They do not exploit the knowledge of the
marking that is sought, merely entertaining the hope that the road to it
will be short. This paper investigates directed unfolding, which exploits
problem-specific information in the form of a heuristic function to guide
the unfolding towards the desired marking. In the unfolding context,
heuristic values are estimates of the distance between configurations. We
show that suitable heuristics can be automatically extracted from the
original net. We prove that unfolding can rely on heuristic search strate-
gies while preserving the finiteness and completeness of the generated
prefix, and in some cases, the optimality of the firing sequence produced.
We also establish that the size of the prefix obtained with a useful class of
heuristics is never worse than that obtained by blind unfolding. Experi-
mental results demonstrate that directed unfolding scales up to problems
that were previously out of reach of the unfolding technique.

1 Introduction

The Petri net unfolding process, originally introduced by McMillan [1], has
gained the interest of researchers in verification (see e.g. [2]), diagnosis [3] and,
more recently, planning [4]. All have reasons to analyse reachability in distrib-
uted transition systems, looking to unfolding for some relief of the state explosion
problem. Unfolding a Petri net reveals all possible partially ordered runs of the
net, without the combinatorial interleaving of independent events. Whilst the
unfolding can be infinite, McMillan identified the possibility of a finite prefix
with all reachable states. Esparza et al. [5] generalised his approach, to produce
the now commonly used ERV unfolding algorithm. This algorithm involves a
search, but does not mandate a specific search strategy. Typically, it has been
implemented as a breadth-first search, using the length of paths to select the
next node to add and to determine cut-off events.

Of the various unfolding-based reachability techniques, experimental results
indicate on-the-fly analysis to be most efficient for proving the reachability of a
single marking [6]. Nevertheless, generating the complete prefix up to a particular
state via breadth-first search quickly becomes impractical when the unfolding is
wide or the shortest path to the state is deep. Unfortunately, it has not been
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obvious what other strategies could be used in the ERV algorithm and recent
results have shown that the use of depth-first search in a simpler unfolding
algorithm is incorrect [7]. In this paper, we investigate directed unfolding, a
strategy that takes advantage of information about the sought marking to guide
the search. The reason why such an informed strategy has not been considered
before may be that unfolding is typically used to prove the absence of deadlocks:
this has set the focus on making the entire prefix smaller rather than on reducing
the part of the search space explored to reach a particular marking. However,
as demonstrated below, information about the goal marking can help also in the
case when this marking is not reachable.

Inspired by heuristic search in artificial intelligence, particularly in the area
of automated planning, directed unfolding exploits problem-specific information
in the form of a heuristic function to guide search towards the desired marking.
Specifically, the heuristic estimates the shortest distance from a given marking
to the desired one, and is used to implement a search strategy where choices are
explored in increasing order of their estimated distance. If the heuristic is suffi-
ciently informative, this order provides effective guidance towards the marking
sought. Whilst the order is not always adequate, in the sense defined in [5], it still
guarantees finiteness and completeness of the generated prefix. Interestingly, our
proof relies on the observation that adequate orders are stronger than necessary
for these purposes, and introduces the weaker notion of semi-adequate ordering.

Using heuristics, automatically extracted from the representation of a transi-
tion system, to guide search has significantly improved the scalability of auto-
mated planning [8–10]. We show that heuristic values can be similarly calculated
from a Petri net. If the chosen heuristic is admissible (meaning it never overesti-
mates the shortest distances) then directed unfolding finds the shortest path to
the target marking, just like breadth-first search. Moreover, a slightly stronger
property than admissibility guarantees that the prefix produced is never larger
than the prefix obtained by breadth-first search. Using inadmissible heuristics,
completeness and correctness are preserved, and performance is often dramati-
cally improved at the expense of optimality. Altogether, directed unfolding can
solve much larger problems than the original breadth-first ERV algorithm. More-
over, its implementation requires only minor additions.

The paper is organised as follows. Section 2 is an overview of Place/Tran-
sition nets, unfoldings, and on-the-fly reachability analysis. Section 3 describes
the ideas behind directed unfolding and establishes its theoretical properties. In
Sect. 4, we show how to automatically extract a range of heuristics from the Petri
net description. In Sect. 5 presents experimental results and Sect. 6 concludes
with remarks about related and future work.

2 Petri Nets, Unfolding and Reachability Analysis

2.1 Place/Transition Petri Nets

Petri nets provide a factored representation of discrete-event systems. States
are not enumerated and flattened into single unstructured entities but rather
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Fig. 1. Example of a Place/Transition Net (top) and its unfolding (bottom)

explicitly factorized into variables (places) such that the temporal relations be-
tween variables become transitions that produce and consume markers in the
net. We consider the so-called Place/Transition (P/T) nets, and describe them
only briefly; a detailed exposition can be found in [11].

A P/T-net (top part of Fig. 1) consists of a net N and its initial marking M0.
The net is a directed bipartite graph where the nodes are places and transitions
(depicted as circles and squares, respectively). Typically, places represent the
state variables and transitions the events of the underlying discrete-event system.
The dynamic behaviour is captured by the flow relation F between places and
transitions and vice versa. The marking of a P/T-net represents the state of the
system. It assigns to each place zero or more tokens (depicted as dots).

Definition 1. A P/T-net is a 4-tuple (P, T, F, M0) where P and T are disjoint
finite sets of places and transitions, respectively, F : (P ×T )∪ (T ×P )→ {0, 1}
is a flow relation indicating the presence (1) or absence (0) of arcs, and M0 :
P → IN is the initial marking.

The preset •x of node x is the set {y ∈ P ∪ T : F (y, x) = 1}, and its postset
x• is the set {y ∈ P ∪ T : F (x, y) = 1}. The marking M enables a transition t
if M(p) > 0 for all p ∈ •t. The occurrence, or firing, of an enabled transition t
absorbs a token from each of its preset places and puts one token in each postset
place. This corresponds to a state transition in the modeled system, moving the
net from M to the new marking M ′ given by M ′(p) = M(p)− F (p, t) + F (t, p)
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for each p; this is denoted as M
t→ M ′. A firing sequence σ = t1 . . . tn is a

legal sequence of transition firings, i.e., there are markings M1, . . . , Mn such
that M0

t1→ M1 · · ·Mn−1
tn→ Mn; this is denoted as M0

σ→ Mn. A marking M is
reachable if there exists a firing sequence σ such that M0

σ→ M . In this paper,
we only consider 1-bounded nets, meaning that all reachable markings assign at
most one token at each place.

2.2 Unfolding

Unfolding is a method for reachability analysis which exploits and preserves
concurrency information in the Petri net. It a partially ordered structure of
events that represents all possible firing sequences of the net from the initial
marking.

Unfolding a P/T-net produces a pair U = (ON, ϕ) where ON = (B, E, F ′) is
an occurrence net, which is a P/T-net without cycles, self conflicts or backward
conflicts (defined below), and ϕ is a homomorphism from ON to N that asso-
ciates the places/transitions of ON with the places/transitions of the P/T-net.

A node x is in self conflict if there exist two paths to x which start at the
same place and immediately diverge. A backward conflict happens when two
transitions output to the same place. Such cases are undesirable since in order
to decide whether a token can reach a place in backward conflict, it would be
necessary to reason with disjunctions such as from which transition the token
came. Therefore, the process of unfolding involves breaking all backward conflicts
by making independent copies of the places involved in the conflicts, and thus
the occurrence net ON may contain multiples copies of places and transitions
of the original net which are identified with the homomorphism.

In the occurrence net ON , places and transitions are called conditions B and
events E, respectively. The initial marking M0 defines a set of initial conditions
B0 in ON such that the places initially marked are in 1–1 correspondence with
the conditions in B0. The set B0 constitutes the “seed” of the unfolding.

The bottom part in Fig. 1 shows a prefix of the unfolding of the P/T-net in
the top part. Note the multiple instances of place g, for example, due to the
different firing sequences through which it can be reached (multiple backward
conflicts). Note also that transition 0 does not appear in the unfolding, as there
no firing sequence that enables transition 0.

2.3 Configurations

To understand how a prefix of an unfolding is built, the most important notions
are that of a configuration and local configuration. A configuration represents a
possible partially ordered run of the net. It is a finite set of events C such that:

1. C is causally closed: e ∈ C ⇒ e′ ∈ C for all e′ ≤ e,
2. C contains no forward conflict: •e1 ∩ •e2 = ∅ for all e1 = e2 in C;

where e′ ≤ e means there is a directed path from e′ to e in ON . If these two
conditions are met, the events in a configuration C can be ordered into a firing
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sequence with respect to B0. For instance, in the finite prefix in Fig. 1, {e1, e3, e4}
is a configuration, while {e1, e4} and {e1, e2} are not since the former is not
causally closed and the latter has a forward conflict.

A configuration C can be associated with a final marking Mark(C) of the
original P/T-net by identifying which conditions will contain a token after the
events in C are fired from the initial conditions; i.e., Mark(C) = ϕ((B0∪C•)\•C)
where C• (resp. •C) is the union of postsets (resp. presets) of all events in C.
In other words, the marking of C identifies the resultant marking of the original
P/T-net when only the transitions labelled by the events in C occur. For in-
stance, in Fig. 1, the marking of configuration {e1, e3, e4, e5} is {g, b}. The local
configuration of an event e, denoted by [e], is the minimal configuration contain-
ing event e. For example, [e5] = {e1, e3, e4, e5}. A set of events can occur in the
same firing sequence iff the union of their local configurations is a configuration.

2.4 Finite Complete Prefix

The unfolding process involves identifying which transitions are enabled by those
conditions, currently in the occurrence net, that can be simultaneously marked.
These are referred to as the possible next events. A new instance of each is added
to the occurrence net, as are instances of the places in their postsets.

The unfolding process starts from the seed B0 and extends it iteratively. In
most cases, the unfolding U is infinite and thus cannot be built. However, it
is not necessary to build U entirely, but only a complete finite prefix β of U
that contains all the information in U . Formally, a prefix β of U is complete if
for every reachable marking M , there exists a configuration C ∈ β such that
Mark(C) = M , and for every transition t enabled by M there is an event e ∈ C
with ϕ(e) = t such that C ∪ {e} is a configuration.

The key for obtaining a complete finite prefix is to identify those events at
which the unfolding can be ceased without loss of information. Such events are
referred to as cut-off events and can be defined in terms of an adequate order
on configurations [1,5,12]. In the following, C ⊕ E denotes a configuration that
extends C with the finite set of events E disjoint from C; such E is called an
extension of configuration C.

Definition 2 (Adequate Orderings). A strict partial order ≺ on finite con-
figurations is an adequate order if and only if

(a) ≺ is well founded, i.e., it has no infinite descending chains,
(b) C1 ⊂ C2 ⇒ C1 ≺ C2, and
(c) ≺ is weakly preserved by finite extensions; i.e., if C1 ≺ C2 and Mark(C1) =

Mark(C2), then for all finite extension E2 of C2, there exist a finite extension
E1 of C1 that is structurally isomorphic1 to E2, and C1 ⊕ E1 ≺ C2 ⊕ E2.

Without threat to completeness, we can cease unfolding from an event e, if it
takes the net to a marking which can be caused by some other already unfolded
1 Two extensions E and E′ are structurally isomorphic if the labelled digraphs induced

by the two sets of events and their adjacent conditions are isomorphic [12].
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Algorithm 1. The ERV Unfolding Algorithm (and ERV/fly variant)
Input: a P/T-net (P, T, F, M0) (and transition tR for ERV/fly).
Output of ERV: complete finite prefix β.
Output of ERV/fly: finite prefix β with event eR, with ϕ(eR) = tR, if tR is reachable,

finite prefix β with no event eR, with ϕ(eR) = tR, otherwise.

1. Initialise the prefix β with the conditions in B0

2. Initialise the priority queue with the events possible in B0

3. Initialise the set cut-off to ∅
4. while the queue is not empty do
5. Remove event e in the queue (minimal with respect to ≺)
6. [[only for ERV/fly]] if h([e]) = ∞ then terminate (tR is not reachable)
7. if [e] contains no event in cut-off then
8. Add e and conditions for its postset to β
9. [[only for ERV/fly]] if ϕ(e) = tR then terminate (tR is reachable)

10. Identify the new possible next events and insert them in the queue
11. if e is a cut-off event in β with respect to ≺ then
12. Update cut-off := cut-off ∪ {e}
13. endif
14. endif
15. endwhile

event e′ such that [e′] ≺ [e]. This is because the events (and thus marking) which
proceed from e will also proceed from e′. Relevant proofs can be found in [5,12].

Definition 3 (Cut-off Events). Let ≺ be an adequate order and β a prefix.
An event e is a cut-off event in β with respect to ≺ iff β contains some event
e′ such that Mark([e]) = Mark([e′]) and [e′] ≺ [e].

2.5 The ERV Algorithm

Algorithm 1 shows the well-known ERV algorithm for unfolding P/T-nets [5]
(and a variant, called ERV/fly, which will be discussed later). ERV maintains a
queue of events, sorted in increasing order with respect to ≺. At each iteration,
a minimal event in the queue is processed, starting with checking whether its
local configuration contains any cut-off event with respect to ≺ in the prefix β
under construction. If not, the event is added to the prefix along with conditions
for its postset, and the new possible next events enabled by the new conditions
are inserted in the queue. The algorithm terminates when all queue events have
been processed (the ERV/fly variant has two additional conditions for earlier
termination). This is the ERV algorithm exactly as it is described in [5].

It is important to mention certain details about the implementation of the
algorithm. First, the order ≺ is used both to order the queue and to identify the
cut-off events. As noted in [5], this implies that if the ordering ≺ is total, the
check at line 11 in Algorithm 1 (“e is a cut-off event in β with respect to ≺”)
can be replaced by the simpler check: “β contains a local configuration [e′] such
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that Mark([e]) = Mark([e′])”, since with a total order, [e′] ≺ [e] for any event e
that is dequeued after e′. This optimisation may be important if evaluating ≺ is
expensive (this, however, is not the case for any order we consider in this paper).
Second, it is in fact not necessary to insert new events that are causal successors
of a cut-off event into the queue – which is done in the algorithm as described –
since they will only be discarded when dequeued. While this optimisation makes
no difference to the prefix generated, it may have a significant impact on both
runtime and memory use. For optimizations related to the generation of possible
next events see [13].

Besides the explicit input parameters, the ERV and ERV/fly algorithms implic-
itly depend on an order ≺ (and also on a function h for ERV/fly). Whenever this
dependency needs to be emphasized, we will refer to both algorithms as ERV[≺]
and ERV/fly[≺, h], respectively. Again, note that whatever order this may be, it
is used both to order the queue and to identify cut-off events.

Mole
2 is a freeware program that implements the ERV algorithm for 1-

bounded P/T-nets. Mole uses McMillan’s [1] cardinality-based ordering (C ≺m

C′ iff |C| < |C′|), further refined into a total order [5]. Note that using this order
equates to a breadth-first search strategy. Mole implements the optimisation
described above, i.e., successors of cut-off events are never placed on the queue.

The prefix in Fig. 1 is the complete finite prefix that Mole generates for our
example. The events e10, e11, and e12 are all cut-off events. This is because each
of their local configurations has the same marking as the local configuration of
event e4, i.e., {f, g}, and each of them is greater than the local configuration of
e4 with respect to the adequate order implemented by Mole.

2.6 On-The-Fly Reachability Analysis

We define the reachability problem (also often called coverability problem) for
1-bounded P/T-nets as follows:

Reachability: Given a P/T-net (P, T, F, M0) and a subset P ′ ⊆ P ,
determine whether there is a firing sequence σ such that M0

σ→M where
M(p) = 1 for all p ∈ P ′.

This problem is PSPACE-complete [14].
Since unfolding constructs a complete finite prefix that represents every reach-

able marking by a configuration, it can be used as the basis of an algorithm for
deciding Reachability. However, deciding if the prefix contains any configura-
tion that leads to a given marking is still NP-complete [6]. If we are interested
in solving multiple Reachability problems for the same net and initial mark-
ing, this is still an improvement. Algorithms taking this approach have been
designed using mixed-integer linear programming [15], stable models for Logic
Programs [16], and other methods [6, 17].

However, if we are interested in the reachability of just one single marking,
the form of completeness offered by the prefix constructed by unfolding is unnec-
essarily strong: we require only that the target marking is represented by some
2 http://www.fmi.uni-stuttgart.de/szs/tools/mole/
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configuration if it is indeed reachable. We will refer to this weaker condition as
completeness with respect to the goal marking. This was recognised already by
McMillan, who suggested an on-the-fly approach to reachability. It involves in-
troducing a new transition tR to the original net with •tR = P ′ and tR

• = {pR}
where pR is a new place. 3 The net is then unfolded until an event eR, such that
ϕ(eR) = tR, is retrieved from the queue. At this point we can conclude that the
set of places P ′ is reachable. If unfolding terminates without identifying such an
event, P ′ is not reachable. If [eR] is not required to be the shortest possible firing
sequence, it is sufficient to stop as soon as eR is generated as one of the possible
next events, but to guarantee optimality, even with breadth-first unfolding, it
is imperative to wait until the event is pulled out of the queue. Experimental
results have shown the on-the-fly approach to be most efficient for deciding the
reachability of a single marking [6].

The ERV/fly variant of the ERV unfolding algorithm embodies two “short
cuts”, in the form of conditions for earlier termination, which are motivated by
the fact that we are interested only in completeness with respect to the goal
marking. The first is simply to adopt McMillan’s on-the-fly approach, stopping
when an instance of transition tR is dequeued. The second depends on a property
of the heuristic function h, and will be discussed in Sect. 3.3.4

3 Directing the Unfolding

In the context of the reachability problem, we are only interested in checking
whether the transition tR is reachable. An unfolding algorithm that does not use
this information is probably not the best approach. In this section, we aim to
define a principled method for using this information during the unfolding process
in order to solve the reachability problem more efficiently. The resulting approach
is called “directed unfolding” as opposed to the standard “blind unfolding”.5

The basic idea is that for deciding Reachability, the unfolding process can
be understood as a search process on the quest for tR. Thus, when selecting
events from the queue, we should favour those “closer” to tR as their systematic
exploration results in a more efficient search strategy. This approach is only
possible if the prefix constructed is guaranteed to be complete, in the sense that
it will, eventually, contain an instance of tR if it is reachable.

We show that the ERV algorithm can be used with the same definition of cut-
off events when the notion of adequate orderings is replaced by a weaker notion
3 Strictly speaking, to preserve 1-safeness, it is also necessary to add a new place

complementary to pR to •tR to avoid multiple firings of tR.
4 In addition, for completeness with respect to a single goal marking, it is not necessary

to insert cut-off events into the prefix at all, since any marking represented by the
local configuration of a cut-off event is by definition already represented by another
event. This optimisation may not have a great impact on runtime, at least if the
previously described optimisation of not generating successors of cut-off events is
already in place, but may reduce memory requirements.

5 The term “directed” has been used elsewhere to emphasize the informed nature of
other model checking algorithms [18].
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that we call semi-adequate orderings. This is prompted by the observation that
the definition of adequate orderings is a sufficient but not a necessary condition
for a sound definition of cut-off events. Indeed, just replacing condition (b) in
Definition 2 by a weaker condition opens the door for a family of semi-adequate
orderings that allow us to direct the unfolding process.

3.1 Principles

As is standard in state-based search, our orderings are constructed upon the
values of a function f that maps configurations into non-negative numbers (in-
cluding infinity). Such functions f are composed of two parts f(C) = g(C)+h(C)
in which g(C) refers to the “cost” of C and h(C) estimates the distance from
Mark(C) to the target marking {pR}. For the purposes of the present work, we
will assume a fixed function g(C) = |C|, yet other possibilities also make sense,
e.g. when transitions are associated with costs, and the cost of a set of transitions
is defined as the sum of the costs of the transitions in the set.

The function h(C) is a non-negative valued function on configurations, and is
required to satisfy:

1. h(C) = 0 if Mark(C) contains a condition cR such that ϕ(cR) = pR where pR

is the new place in tR
•, and

2. h(C) = h(C′) whenever Mark(C) = Mark(C′).

Such functions will be called heuristic functions on configurations. Note that the
function which assigns value 0 to all configurations is a heuristic function. We
will denote this function h ≡ 0. For two heuristic functions, h ≤ h′ denotes the
standard notion of h(C) ≤ h′(C) for all configurations C.

Let h be a heuristic and, for f(C) = |C| + h(C), define the ordering ≺h as
follows:

C ≺h C′ iff
{

f(C) < f(C′) if f(C) = f(C′)
|C| < |C′| if f(C) = f(C′).

Observe that ≺h≡0 is the strict partial order ≺m on configurations used by
McMillan [1], which can be refined into the total order defined in [5].

Let us define h∗(C) = |C′|− |C|, where C′ ⊇ C is a configuration of minimum
cardinality that contains an instance of tR if one exists, and ∞ otherwise. (By
“an instance of tR” we mean of course an event eR such that ϕ(eR) = tR.)
We then say that h is an admissible heuristic if h(C) ≤ h∗(C) for all finite
configurations C. Likewise, let us say that a finite configuration C∗ is optimal
if it contains an instance of tR, and it is of minimum cardinality among such
configurations. By f∗ we denote |C∗| if an optimal configuration exists (i.e., if
tR is reachable) and ∞ otherwise. In the following, ERV[h] denotes ERV[≺h].

Theorem 1 (Main). Let h be a heuristic function on configurations. Then,
ERV[h] computes a finite and complete prefix of the unfolding. Furthermore, if
h is admissible, then ERV[h] finds an optimal configuration if tR is reachable.
Both claims also hold for any semi-adequate ordering that refines ≺h.6

6 Ordering ≺′ refines ≺ iff C ≺ C′ implies C ≺′ C′ for all configurations C and C′.
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Note that this result by no means contradicts a recent proof that unfolding
with depth-first search is incorrect [7]. Not only do heuristic strategies have a
“breadth” element to them which depth-first search lacks, but, more importantly,
the algorithm shown incorrect differs from the ERV algorithm in that when
identifying cut-off events it only checks if the prefix contains a local configuration
with identical marking but does not check whether the ordering ≺ holds.

Optimal configurations are important in the context of diagnosis since they
provide shortest firing sequences to reach a given marking, e.g. a faulty state
in the system. A consequence of Theorem 1 is that the Mole implementation
of the ERV algorithm, which equates using a refinement of ≺h≡0 into a total
order [5], finds shortest firing sequences. In the next two sections, we will give
examples of heuristic functions, both admissible and non-admissible, and exper-
imental results on benchmark problems. In the rest of this section, we provide
the technical characterization of semi-adequate orderings and their relation to
adequate ones, as well as the proofs required for the main theorem. We also
provide a result concerning the size of the prefixes obtained.

3.2 Technical Details

Upon revising the role of adequate orders when building the complete finite
prefix, we found that condition (b), i.e., C ⊂ C′ ⇒ C ≺ C′, in Definition 2
is only needed to guarantee the finiteness of the generated prefix. Indeed, let
n be the number of reachable markings and consider an infinite sequence of
events e1 < e2 < · · · in the unfolding. Then, there are i < j ≤ n + 1 such that
Mark([ei]) = Mark([ej ]), and since [ei] ⊂ [ej ], condition (b) implies [ei] ≺ [ej ]
making [ej ] into a cut-off event, and thus the prefix is finite [5]. A similar result
can be achieved if condition (b) is replaced by the weaker condition that in every
infinite chain e1 < e2 < · · · of events there are i < j such that [ei] ≺ [ej ]. To
slightly simplify the proofs, we can further weaken that condition by asking that
the local configurations of these events have equal markings.

Definition 4 (Semi-Adequate Orderings). A strict partial order ≺ on finite
configurations is a semi-adequate order if and only if

(a) ≺ is well founded, i.e., it has no infinite descending chains,
(b) in every infinite chain C1 ⊂ C2 ⊂ · · · of configurations with equal markings

there are i < j such that Ci ≺ Cj, and
(c) ≺ is weakly preserved by finite extensions.

Theorem 2 (Finiteness and Completeness). If ≺ is a semi-adequate order,
the prefix produced by ERV[≺] is finite and complete.

Proof. The completeness proof is identical to the proof of Proposition 4.9 in
[5, p. 14] which states the completeness of the prefix computed by ERV for
adequate orderings: this proof does not rely on condition (b) at all. The finiteness
proof is similar to the proof of Proposition 4.8 in [5, p. 13] which states the
finiteness of the prefix computed by ERV for adequate orderings. If the prefix is
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not finite, then by the version of König’s Lemma for branching processes [19], an
infinite chain e1 < e2 < · · · of events exists in the prefix. Each event ei defines
a configuration [ei] with marking Mark([ei]), and since the number of markings
is finite, there is at least one marking that appears infinitely often in the chain.
Let e′1 < e′2 < · · · be an infinite subchain such that Mark([e′1]) = Mark([e′j ])
for all j > 1. By condition (b) of semi-adequate orderings, there are i < j such
that [e′i] ≺ [e′j] that together with Mark([e′i]) = Mark([e′j ]) make e′j into a cut-off
event and thus the chain cannot be infinite. ��

Clearly, if ≺ is an adequate order, then it is a semi-adequate order. The con-
verse is not necessarily true. The fact that ≺h is semi-adequate is a consequence
of the monotonicity of g(C) = |C|, i.e., C ⊂ C′ ⇒ g(C) < g(C′), and that
configurations with equal markings have identical h-values.

Theorem 3 (Semi-Adequacy of ≺h). If h is a heuristic on configurations,
≺h is a semi-adequate order.

Proof. That ≺h is irreflexive and transitive is direct from definition.
For well-foundedness, first observe that if C and C′ are two configurations

with the same marking, then C ≺h C′ iff |C| < |C′|. Let C1 �h C2 �h · · · be
an infinite descending chain of finite configurations with markings M1, M2, . . .,
respectively. Observe that not all Ci’s have f(Ci) = ∞ since, by definition of
≺h, this would imply ∞ > |C1| > |C2| > · · · ≥ 0 which is impossible. Similarly,
at most finitely many Ci’s have infinite f value. Let C′

1 �h C′
2 �h · · · be the

subchain where f(C′
i) <∞ for all i, and M ′

1, M
′
2, . . . the corresponding markings.

Since the number of markings is finite, we can extract a further subsubchain
C′′

1 �h C′′
2 �h · · · such that Mark(C′′

1 ) = Mark(C′′
j ) for all j > 1. Therefore,

|C′′
1 | > |C′′

2 | > · · · ≥ 0 which is impossible since all C′′
i ’s are finite.

For condition (b), let C1 ⊂ C2 ⊂ · · · be an infinite chain of finite configurations
with equal markings. Therefore, val

.= h(C1) = h(Cj) for all j > 1, and also
|C1| < |C2|. If val =∞, then C1 ≺h C2. If val <∞, then f(C1) = |C1|+ val <
|C2|+ val = f(C2) and thus C1 ≺h C2.

Finally, if C1 ≺h C2 have equal markings and the extensions E1 and E2 are
isomorphic, the configurations C′

1 = C1 ⊕E1 and C′
2 = C2 ⊕E2 also have equal

markings, and it is straightforward to show that C′
1 ≺h C′

2. ��

Proof (of Theorem 1). That ERV[h] computes a complete and finite prefix is
direct since, by Theorem 3, ≺h is semi-adequate and, by Theorem 2, this is
enough to guarantee finiteness and completeness of the prefix.

For the second claim, assume that tR is reachable. Then, the prefix computed
by ERV contains at least one instance of tR. First, we observe that until eR is
dequeued, the queue always contains an event e such that [e] is a prefix of an
optimal configuration C∗. This property holds at the beginning (initially, the
queue contains all possible extensions of the initial conditions) and by induction
remains true after each iteration of the while loop. This is because if e is dequeued
then either e = eR, or a successor of e will be inserted in the queue which will
satisfy the property, or it must be the case that e is identified as a cut-off event
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by ERV. But the latter case implies that there is some e′ in the prefix built so
far such that Mark([e′]) = Mark([e]) and f([e′]) < f([e]). This in turn implies
that h([e′]) = h([e]), and thus |[e′]| < |[e]| which contradicts the assumption on
the minimality of C∗.

For proof by contradiction, suppose that ERV dequeues a instance eR of tR
such that [eR] is not optimal, i.e., not of minimum cardinality. If e is an event
in the queue, at the time eR is dequeued, such that [e] is a subset of an optimal
configuration C∗, then

f([e]) = |[e]|+ h([e]) ≤ |[e]|+ h∗([e]) = |[e]|+ |C∗| − |[e]| = |C∗| .

On the other hand, since [eR] is non-optimal by supposition, f([eR]) = |[eR]| >
|C∗|. Therefore, f([eR]) > f([e]) and thus [e] ≺h [eR] and eR could not have
been pulled out of the queue before e.

Observe that the proof does not depend on how the events with equal f -values
are ordered in the queue. Thus, any refinement of ≺h also works. ��

3.3 Size of the Finite Prefix

As we have already remarked, to solve Reachability using unfolding we require
only that the prefix is complete with respect to the sought marking, i.e., that it
contains a configuration representing that marking iff the marking is reachable.
This enables us to take certain “short cuts”, in the form of conditions for earlier
termination, in the unfolding algorithm, which results in a smaller prefix being
constructed. In this section, we show first that these modifications preserve the
completeness of the algorithm, and the guarantee of finding an optimal solution
if the heuristic is admissible. Second, under some additional assumptions, we
show a result relating the size of the prefix computed by directed on-the-fly
unfolding to the informedness of the heuristic.

Before proceeding, let us review the modifications made in the variant of the
ERV algorithm which we call ERV/fly (for ERV on-the-fly). The first “short cut”
is adopting the on-the-fly approach, terminating the algorithm as soon as an in-
stance of the target transition tR is added to the prefix. For the second, if the
heuristic h has the property that h(C) = ∞ implies h∗(C) = ∞ (i.e., it is not
possible to extend C into a configuration containing an instance tR), then the un-
folding can be stopped as soon as the f -value of the next event retrieved from the
queue is∞, since this implies that tR is unreachable. We call heuristics that sat-
isfy this property safely pruning. Note pruning safety is a weaker requirement than
admissibility, in the sense that an admissible heuristic is always safely pruning.

Monotonicity is another well-known property of heuristic functions, which is
stronger than admissibility. A heuristic h is monotonic iff it satisfies the triangle
inequality h(C) ≤ |C′|−|C|+h(C′), i.e., f(C) ≤ f(C′), for all finite C′ ⊇ C. If h
is monotonic, the order≺h is in fact adequate [4]. Even though admissibility does
not imply monotonicity, it is in practice difficult to construct good admissible
heuristics that are not monotonic. The admissible heuristic hmax, described in
the next section, is also monotonic.
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Although ERV/fly depends on an order ≺ and a heuristic h, we consider only
the case of ≺h and h for the same heuristic. Thus, we denote with ERV/fly[h]
the algorithm ERV/fly[≺h, h], and with β[h] the prefix computed by ERV/fly[h].
We first establish the correctness of the modified algorithm, and then relate the
size of the computed prefix to the informedness of the heuristic.

Theorem 4. Let h be a safely pruning heuristic function on configurations.
Then, ERV/fly[h] computes a finite prefix of the unfolding that is complete with
respect to the goal marking, and this prefix is contained in that computed by
ERV[h]. Furthermore, if h is admissible, then ERV/fly[h] finds an optimal con-
figuration if tR is reachable. Both claims also hold for ERV/fly[≺, h] where ≺ is
any semi-adequate order that refines ≺h.

Proof. ERV/fly[h] is exactly ERV[h] plus two conditions for early termination.
As long as neither of these is invoked, ERV/fly[h] behaves exactly like ERV[h]. If
the positive condition (an instance of tR is dequeued, line 9 in Algorithm 1) is
met, tR is clearly reachable and the the prefix computed by ERV/fly[h] contains
a witnessing event. If the negative condition (the h-value of the next event in
the queue is ∞, line 6 in Algorithm 1) is met, then the h-value of every event
in the queue must be ∞. Since h is safely pruning, this implies none can be
extended to a configuration including an instance of tR. Thus, ERV[h] will not
find an instance of tR either (even though it continues dequeueing these events,
inserting them into the prefix and generating successor events until the queue is
exhausted). Since ERV[h] is complete, tR must be unreachable.

As in ERV[h], both claims hold also for any refinement of ≺h. ��

If the heuristic h does not assign infinite cost to any configuration, the negative
condition can never come into effect and ERV/fly[h] is simply a directed version
of McMillan’s on-the-fly algorithm. In particular, this holds for h ≡ 0.

The next result is that when heuristics are monotonic, improving the in-
formedness of the heuristic can only lead to improved performance, in the sense
of a smaller prefix being constructed. In particular, this implies that for any
monotonic heuristic h, the prefix β[h] is never larger than that computed by
ERV/fly[h ≡ 0], regardless of whether the goal transition tR is reachable or not.
This is not particularly surprising: it is well known in state space search, that
– all else being equal – directing the search with a monotonic heuristic cannot
result in a larger part of the state space being explored compared to blind search.

In order to compare the sizes of the prefixes computed with two different
heuristics, we need to be sure that both algorithms break ties when selecting
events from the queue in a consistent manner. For a formal definition, consider
two instances of ERV/fly: ERV/fly[h1] and ERV/fly[h2]. We say that a pair of
events (e, e′) is an inconsistent pair for both algorithms if and only if

1. [e] ≺hi [e′] and [e′] ≺hi [e] for i ∈ {1, 2},
2. there was a time t1 in which e and e′ were in the queue of ERV/fly[h1], and e

was dequeued before e′, and
3. there was a time t2, not necessarily equal to t1, in which e and e′ were in the

queue of ERV/fly[h2], and e′ was dequeued before e.
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Fig. 2. Example net with an unreachable goal transition (tR)

We say that ERV/fly[h1] and ERV/fly[h2] break ties in a consistent manner if and
only if there are no inconsistent pairs between them.

Theorem 5. If h1 and h2 are two monotonic heuristics such that h1 ≤ h2, and
ERV/fly[h1] and ERV/fly[h2] break ties in a consistent manner, then every event
in β[h2] is also in β[h1].

Since the all-zero heuristic is monotonic, it follows that the number of events in
the prefix computed by ERV/fly[h], for any other monotonic heuristic h, is never
greater than the number of such events in the prefix computed by ERV/fly[h ≡ 0],
i.e., McMillan’s algorithm (although this can, in the worst case, be exponential in
the number of reachable states). As noted earlier, for completeness with respect
to the goal marking, it is not necessary to insert cut-off events into the prefix
(since the marking represented by the local configuration of such an event is
already represented by another event in the prefix).

Although the same cannot, in general, be guaranteed for inadmissible heuris-
tics, we demonstrate experimentally below that in practice, the prefix they com-
pute is often significantly smaller than that found by blind ERV/fly, even when
the target transition is not reachable. The explanation for this is that all the
heuristics we use are safely pruning, which enables us to terminate the algorithm
earlier (as soon as the h-value of the first event in the queue is ∞) without loss
of completeness.

To illustrate, consider the example net in Fig. 2. Suppose initially only place
a is marked: at this point, a heuristic such as hmax (defined in the next section)
estimates that the goal marking {pR} is reachable in 3 steps (the max length of
the two paths). However, as soon as either transition 1 or 2 is taken, leading to a
configuration in which either place b or c is marked, the hmax estimate becomes
∞, since there is then no way to reach one of the two goal places.

Pruning safety is a weaker property than admissibility, as it pertains only
to a subset of configurations (the dead-end configurations from which the goal
is unreachable). Most heuristic functions satisfy it; in particular, so do all the
specific heuristics we consider in this paper. Moreover, the heuristics we consider
all have equal “pruning power”, meaning they assign infinite estimated cost to
the same set of configurations. There exist other heuristics, for example those
based on pattern databases [20, 21], that have much greater pruning power.

Proof of Theorem 5

Recall that f∗ denotes the size of an optimal configuration if one exists, and ∞
otherwise.
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Lemma 1. If h is admissible, all events in β[h] have f -value ≤ f∗. ��

Proof. If tR is not reachable, f∗ =∞ and the claim holds trivially. Suppose tR
is reachable. Before the first event corresponding to tR is dequeued, the queue
always contains an event e part of the optimal configuration, which, due to
admissibility, has f([e]) ≤ f∗ (see proof of Theorem 1 (ii)). Thus, the f -value of
the first event in the queue cannot be greater than f∗. When an instance of tR
is dequeued, ERV/fly[h] stops. ��

Lemma 2. Let h be a monotonic heuristic. (i) If e < e′, i.e., e is a causal
predecessor of e′, then f([e]) ≤ f([e′]). (ii) Let β′ be any prefix of β[h] (i.e.,
β′ is the prefix constructed by ERV/fly[h] at some point before the algorithm
terminates). If e is an event in β′, then every event e′ such that h([e′]) < ∞,
[e′]− {e′} contains no cut-off event in β′ with respect to ≺h, and [e′] ≺h [e], is
also in β′. ��

Proof. (i) Consider two events, e and e′, such that e < e′, i.e., e is a causal pre-
decessor of e′. Since [e′] is a finite extension of [e], the definition of monotonicity
states that h([e]) ≤ |[e′]| − |[e]| + h([e′]), which implies that |[e]| + h([e]) ≤
|[e′]| + h([e′]), i.e., that f([e]) ≤ f([e′]). Thus, in any causal chain of events
e1 < · · · < en, it holds that f([e1]) ≤ · · · ≤ f([en]).

(ii) Let e and e′ be events such that e is in β′, h([e′]) <∞, [e′]−{e′} contains
no cut-off event in β′ with respect to ≺h, and [e′] ≺h [e]. We show that e′ must
be dequeued before e. Since [e′] cannot contain any cut-off event, other than
possibly e′ itself, it will be added to the prefix when it is dequeued, because, at
this point, e′ cannot be in the set of recognised cut-off event (the set cut-off is
only updated on line 12 in the algorithm). Since e ∈ β′, this implies that e′ ∈ β′.

Either e′ itself or some ancestor e′′ of e′ is in the queue at all times before e′

is dequeued. By (i), f([e′′]) ≤ f([e′]) <∞ for every causal ancestor e′′ of e′, and
since |[e′′]| < |[e′]| we have [e′′] ≺h [e′] and therefore [e′′] ≺h [e] (by transitivity
of ≺h). Thus, all ancestors of e′ must be dequeued before e and, since their local
configurations contain no cut-off events, added to the prefix. Thus, e′ must be
put into the queue before e is dequeued, and, since [e′] ≺h [e], it is dequeued
before e. ��

Lemma 3. For any heuristic h, the event e is a cut-off event in prefix β with
respect to ≺h if and only if e is a cut-off event in β with respect to ≺m, where
≺m is McMillan’s order, i.e., [e] ≺m [e′] if and only if |[e]| < |[e′]|. ��

Proof. If e is a cut-off event in β with respect to ≺h, then there exists an event
e′ in β such that Mark([e′]) = Mark([e]) and [e′] ≺h [e]. The former implies that
h([e′]) = h([e]). The latter implies that either f([e′]) < f([e]), or f([e′]) = f([e])
and |[e′]| < |[e]|. Both imply |[e′]| < |[e]| and so [e′] ≺m [e].

If e is a cut-off event in β with respect to ≺m, then there is e′ such that
Mark([e′]) = Mark([e]) and |[e′]| < |[e]|. The former implies that h([e′]) = h([e]).
Therefore, f([e′]) < f([e]) and so [e′] ≺h [e]. ��
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Lemma 4. For any monotonic heuristic h, an event e ∈ β[h] is a cut-off with
respect to ≺h in β[h] iff e is a cut-off in the prefix β′ built by ERV/fly[h] up to
the point when e was inserted. ��

Proof. That e remains a cut-off event in the final prefix β[h] if it was in β′ is
obvious.

If the h-value of the first event on the queue is∞, ERV/fly terminates, without
inserting the event into the prefix. Thus, since e ∈ β[h], h([e]) <∞.

If e is a cut-off event in β[h] with respect to ≺h, there exists an event e′ ∈ β[h]
such that Mark([e′]) = Mark([e]), [e′] ≺h [e], and [e′] contains no cut-off event.
The first two properties of e′ are by definition of cut-off events. For the last,
suppose [e′] contains a cut-off event: then there is another event e′′ ∈ β[h],
with the same marking and such that [e′′] ≺h [e′] (and thus by transitivity
[e′′] ≺h [e]). If [e′′] contains a cut-off event, there is again another event, with
the same marking and less according to the order: the recursion finishes at some
point because the order ≺h is well-founded and the prefix β[h] is finite. Thus,
there is such an event whose local configuration does not contain a cut-off event:
call it e′. Consider the prefix β′ ⊕ {e} (i.e., the prefix immediately after e was
inserted): since it contains e, by Lemma 2(ii) it also contains e′. ��

Since ERV/fly never inserts into the prefix an event e such that [e] contains
an event that is a cut-off in the prefix at that point, it follows from Lemma 4
that if h is a monotonic heuristic, the final prefix β[h] built by ERV/fly[h] upon
termination contains no event that is the successor of a cut-off event.

Proof (of Theorem 5). Let f1 and f2 denote f -values with respect to h1 and h2,
respectively, i.e., f1([e]) = |[e]|+ h1([e]) and f2([e]) = |[e]|+ h2([e]).

We show by induction on |[e]| that every event e ∈ β[h2] such that [e] − {e}
contains no cut-off event in β[h2] with respect to ≺h2 , i.e.,, such that e is not a
post -cut-off event, is also in β[h1]. As noted, by Lemma 4, ERV/fly directed with
a monotonic heuristic never inserts any post-cut-off event into the prefix. Thus,
it follows from the above claim that every event that may actually be in β[h2]
is also in β[h1].

For |[e]| = 0 the claim holds because there are no such events in β[h2]. Assume
that it holds for |[e]| < k. Let e ∈ β[h2] with [e]−{e} containing no cut-off events
and |[e]| = k. By inductive hypothesis, all causal ancestors of e are in β[h1].

Ancestors of e are not cut-off events in β[h2] with respect to ≺h2 (if any of
them were e would be a post-cut-off event). Assume some ancestor e′ of e is a
cut-off event in β[h1] with respect to ≺h1 . Then, there is e′′ ∈ β[h1] such that
Mark([e′′]) = Mark([e′]), [e′′] ≺h1 [e′] and [e′′] contains no cut-off event in β[h1]
with respect to ≺h1 (by the same reasoning as in the proof of Lemma 4). If
some event e′′′ ∈ [e′′] is a cut-off event in β[h2] with respect to ≺h2 , then there
exists an event e4 in β[h2], with equal marking, [e4] ≺h2 [e′′′], and such that
[e4] contains no cut-off event. But |[e4]| < |[e′′′]| < |[e′′]| < |[e′]| < k, so by
the inductive hypothesis, e4 is also in β[h1], and because [e4] ≺h2 [e′′′] implies
that [e4] ≺h1 [e′′′] (by Lemma 3), this means that e′′′ is a cut-off event in β[h1]
with respect to ≺h1 . This contradicts the choice of e′′ as an event such that
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[e′′] contains no cut-off events in β[h1] with respect to ≺h1 . Therefore, because
|[e′′]| < |[e′]|, which implies [e′′] ≺h2 [e′] (by Lemma 3), it follows from Lemma 2
that e′′ is in β[h2]. This makes e′ a cut-off event in β[h2] with respect to ≺h2 ,
contradicting the fact that e was chosen to be a non-post-cut-off event in β[h2].
Thus, no ancestor of e is a cut-off event in β[h1] with respect to ≺h1 . It remains
to show that e must be dequeued by ERV/fly[h1] before it terminates: since
ancestors of e are not cut-off events in β[h1] with respect to ≺h1 , it follows from
Lemma 4 that they are not cut-off events in the prefix built by ERV/fly[h1] at
that point either, and therefore that, when dequeued, e is inserted into β[h1] by
ERV/fly[h1].

First, assume that tR is reachable. By Theorem 4, there is an instance e1
R

of tR in β[h1] and an instance e2
R of tR in β[h2] with |[e1

R]| = |[e2
R]| = f∗. By

Lemma 1, f2([e]) ≤ f2([e2
R]) = f∗ and thus, since h1([e]) ≤ h2([e]), f1([e]) ≤ f∗.

We do an analysis by cases:

• If f1([e]) < f∗, then [e] ≺h1 [e1
R] and, by Lemma 2, e is in β[h1].

• If f1([e]) = f∗ and |[e]| < |[e1
R]|, then [e] ≺h1 [e1

R] and e is in β[h1].
• If f1([e]) = f∗, |[e]| = |[e1

R]| and e = e1
R, then e is in β[h1].

• f1([e]) = f∗, |[e]| = |[e1
R]| and e = e1

R: e was in the queue of ERV/fly[h1]
when e1

R was dequeued because all causal ancestors of e were in β[h1] at
that time (because their f -values are all less than or equal to f∗ and the
size of their local configurations is strictly smaller). Thus, ERV/fly[h1] chose
to dequeue e1

R before e (and terminated). We show that ERV/fly[h2] must
have chosen to dequeue e before e1

R even though e1
R was in the queue of

ERV/fly[h2], and thus the two algorithms do not break ties in a consistent
manner, contradicting the assumptions of the theorem. All causal ancestors e′

of e1
R satisfy [e′] ≺h2 [e2

R] and therefore, by Lemma 2, are in β[h2]. Hence, when
e is dequeued by ERV/fly[h2], e1

R is in the queue. It cannot be in β[h2] since
this would imply termination of ERV/fly[h2] before adding e. Thus, ERV/fly[h2]
chose e over e1

R.

Next, assume that tR is unreachable. In this case, ERV/fly[h1] can terminate
only when the queue is empty or the h-value of the first event in the queue is∞.
The former cannot happen before ERV/fly[h1] dequeues e, because all ancestors
of e are in β[h1] and thus e was inserted into the queue of ERV/fly[h1]. Since
e ∈ β[h2], h2([e]) < ∞ (recall that ERV/fly never inserts an event with infinite
h-value into the prefix), and therefore h1([e]) <∞. Thus, the latter also cannot
happen before ERV/fly[h1] dequeues e, because e was in the queue of ERV/fly[h1]
and its h-value is less than ∞. ��

4 Heuristics

A common approach to constructing heuristic functions, both admissible and
inadmissible, is to define a relaxation of the search problem, such that the re-
laxed problem can be solved, or at least approximated, efficiently, and then use
the cost of the relaxed solution as an estimate of the cost of the solution to the
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real problem, i.e., as the heuristic value [22]. The problem of extending a config-
uration C of the unfolding into one whose marking includes the target place pR

is equivalent to the problem of reaching pR starting from Mark(C): this is the
problem that we relax to obtain an estimate of the distance to reach pR from C.

The heuristics we have experimented with are derived from two different re-
laxations, both developed in the area of AI planning. The first relaxation is to
assume that the cost of reaching each place in a set of places is independent
of the others. For a transition t to fire, each place in •t must be marked: thus,
the estimated distance from a given marking M to a marking where t can fire
is d(M, •t) = maxp∈•t d(M, {p}), where d(M, {p}) denotes the estimated dis-
tance from M to any marking that includes {p}. For a place p to be marked
– if it is not marked already – at least one transition in •p must fire: thus,
d(M, {p}) = 1 + mint∈•p d(M, •t). Combining the two facts we obtain

d(M, M ′) =

⎧⎨⎩
0 if M ′ ⊆M
1 + mint∈•p d(M, •t) if M ′ = {p}
maxp∈M ′ d(M, {p}) otherwise

(1)

for the estimated distance from a marking M to M ′. Equation (1) defines only
estimated distances to places that are reachable, in the relaxed sense, from M ;
the distance to any place that is not is taken to be∞. A solution can be computed
in polynomial time, by solving what is essentially a shortest path problem. We
obtain a heuristic function, called hmax, by hmax(C) = d(Mark(C), {pR}), where
tR

• = {pR}. This estimate is never greater than the actual distance, so the hmax

heuristic is admissible.
In many cases, however, hmax is too weak to effectively guide the unfold-

ing. Admissible heuristics in general tend to be conservative (since they need
to ensure that the distance to the goal is not overestimated) and therefore less
discriminating between different configurations. Inadmissible heuristics, on the
other hand, have a greater freedom in assigning values and are therefore often
more informative, in the sense that the relative values of different configurations
is a stronger indicator of how “promising” the configurations are. An inadmis-
sible, but often more informative, version of the hmax heuristic, called hsum, can
be obtained by substituting

∑
p∈M ′ d(M, {p}) for the last clause of Eq. (1). hsum

dominates hmax, i.e., for any C, hsum(C) ≥ hmax(C). However, since the above
modification of Eq. (1) changes only estimated distances to places that are reach-
able, in the relaxed sense, hsum is still safely pruning, and in fact has the same
pruning power as hmax.

The second relaxation is known as the delete relaxation. In Petri net terms, the
simplifying assumption made in this relaxation is that a transition only requires
the presence of a token in each place in its preset, but does not consume those
tokens when fired (put another way, all arcs leading into a transition are assumed
to be read-arcs). This implies that a place once marked will never be unmarked,
and therefore that any reachable marking is reachable by a “short” transition
sequence. Every marking that is reachable in the original net is a subset of a
marking that is reachable in the relaxed problem. The delete-relaxed problem
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Fig. 3. Relaxed plan graph corresponding to the P/T-net in Fig. 1

has the property that a solution – if one exists – can be found in polynomial
time. The procedure for doing this constructs a so called “relaxed plan graph”,
which may be viewed as a kind of unfolding of the relaxed problem. Because
of the delete relaxation, the construction of the relaxed plan graph is much
simpler than unfolding a Petri net, and the resulting graph is conflict-free7 and
of bounded size (each transition appears at most once in it). Once the graph has
been constructed, a solution (configuration leading to pR) is extracted; in case
there are multiple transitions marking a place, one is chosen arbitrarily. The size
of the solution to the relaxed problem gives a heuristic function, called hFF (after
the planning system FF [9] which was the first to use it). Figure 3 shows the
relaxed plan graph corresponding to the P/T-net in Fig. 1: solutions include, e.g.
the sequences 2, 3, 5, tR; 1, 3, 4, tR; and 1, 2, 0, 3, tR. The FF heuristic satisfies the
conditions required to preserve the completeness of the unfolding (in Theorem 1)
and it is safely pruning, but, because an arbitrary solution is extracted from the
relaxed plan graph, it is not admissible. The heuristic defined by the size of the
minimal solution to the delete-relaxed problem, known as h+, is admissible, but
solving the relaxed problem optimally is NP-hard [23].

The relaxing assumption of independence of reachability underlying the hmax

heuristic is implied by the delete relaxation. This means hmax can also be seen
as an (admissible) approximation of h+, and that hmax is dominated by hFF.
However, the independence relaxation can be generalised by considering depen-
dencies between sets of places of limited size (e.g. pairs), which makes it different
from the delete relaxation [24].

5 Experimental Results

We extended Mole to use the ≺h ordering with the hmax, hsum, and hFF heuris-
tics. In our experiments below we compare the resulting directed versions of
Mole with the original (breadth-first) version, and demonstrate that the for-
mer can solve much larger instances than were previously within the reach of
7 Technically, delete relaxation can destroy the 1-boundedness of the net. However,

the exact number of tokens in a place does not matter, but only whether the place
is marked or not, so in the construction of the relaxed plan graph, two transitions
marking the same place are not considered a conflict.
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Fig. 4. Results for Dartes Instances

the unfolding technique. We found that the additional tie-breaking comparisons
used by Mole to make the order strict were slowing down all versions (including
the original): though they do – sometimes – reduce the size of the prefix, the
computational overhead quickly consumes any advantage. (As an example, on
the unsolvable random problems considered below, the total reduction in size
amounted to less than 1%, while the increase in runtime was around 20%.) We
therefore disabled them in all experiments.8 Experiments were conducted on a
Pentium M 1.7 GHz with a 2 Gb memory limit. The nets used in the experiments
can be found at http://rsise.anu.edu.au/∼thiebaux/benchmarks/petri.

5.1 Petri Net Benchmarks

First, we tested directed Mole on a set of standard Petri net benchmarks repre-
sentative of Corbett’s examples [25]. However, in all but two of these, the blind
version of Mole is able to decide the reachability of any transition in a matter
of seconds. The two problems that presented a challenge are Dartes, which
models the communication skeleton of an Ada program, and dme12. 9

Dartes is the one where heuristic guidance shows the greatest impact. Lengths
of the shortest firing sequences required to reach each of the 253 transitions in this
problem reach over 90 events, and the breadth-first version could not solve any in-
stancewitha shortest solution lengthover 60.Overall, theundirectedversion is able
to decide 185 of the 253 instances (73%),whereas the versiondirectedbyhsum solves
245 (97%). The instances solved by eachdirected version is a strict superset of those
solved by the original. Unsurprisingly, all the solved problems were positive deci-
sions (the transitions were reachable). Figure 4 presents the percentage of reacha-
bility problems decided by each version of Molewithin increasing time limits. The
breadth-first version is systematically outperformed by all directed versions.

8 Thus, our breadth-first Mole actually implements McMillan’s ordering [1].
9 It has since been pointed out to us that the dme12 problem is not 1-safe, and thus

not suitable for either blind or directed Mole.
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Fig. 5. Results for first set of Random P/T-nets

In the dme12 benchmark, blind Mole finds solutions for 406 of the 588 tran-
sitions, and runs out of memory on the rest. Solution lengths are much shorter
in this benchmark: the longest found by the blind version is 29 steps. Thus, it is
more difficult to improve over breadth-first search. Nevertheless, Mole directed
with hmax solves an additional 26 problems, one with a solution length of 37.
Mole with the hsum and hFF performs worse on this benchmark.

5.2 Random Problems

To further investigate the scalability of directed unfolding, we implemented our
own generator of random Petri nets. Conceptually, the generator creates a set
of component automata, and connects them in an acyclic dependency network.
The transition graph of each component automaton is a sparse, but strongly
connected, random digraph. Synchronisations between pairs of component au-
tomata are such that only one (the dependent) automaton changes state, but
can only do so when the other component automaton is in a particular state.
Synchronisations are chosen randomly, constrained by the acyclic dependency
graph. Target states for the various automata are chosen independently at ran-
dom. The construction ensures that every choice of target states is reachable.
We generated random problems featuring 1 . . . 15 component automata of 10,
20, and 50 states each. The resulting Petri nets range from 10 places and 30
transitions to 750 places and over 4,000 transitions.

Results are shown in Fig. 5. The left-hand graph shows the number of events
pulled out of the queue. The right-hand graph shows the run-time. To avoid clut-
tering the graphs, we show only the performance of the worst and best strategy,
namely the original one, and hsum. Evidently, directed unfolding can solve much
larger problems than blind unfolding. For the largest instances we considered, the
gap reached over 2 orders of magnitude in speed and 3 in size. The original version
could merely solve the easier half of the problems, while directed unfolding only
failed on 6 of the largest instances (with 50 states per component).

In these problems, optimal firing sequences reach lengths of several hundreds
events. On instances which we were able to solve optimally using hmax, hFF
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Fig. 6. Results for second set of Random P/T-nets

produced solutions within a couple transitions of the optimal. Over all problems,
solutions obtained with hsum were a bit longer than those obtained with hFF.

With only a small modification, viz. changing the transition graph of each com-
ponent automaton into a (directed) tree-like structure instead of a strongly con-
nected graph, the random generator can also produce problems in which the goal
marking has a fair chance of being unreachable. To explore the effect of directing
the unfolding in this case, we generated 200 such instances (each with 10 compo-
nents of 10 states per component), of which 118 turned out to be reachable and
82 unreachable, respectively. Figure 6 shows the results, in the form of distribu-
tion curves (prefix size on the left and run-time on the right; note that scales are
logarithmic). The lower curve is for solvable problems, while the upper, “inverse”
curve, is for problems where the goal marking is not reachable. Thus, the point
on the horizontal axis where the two curves meet on the vertical is where, for the
hardest instance, the reachability question has been answered.

As expected, hsum solves instances where the goal marking is reachable faster
than hmax, which is in turn much faster than blind unfolding. However, also in
those instances where the goal marking is not reachable, the prefix generated
by directed unfolding is significantly smaller than that generated by the original
algorithm. In this case, results of using the two heuristics are nearly indistin-
guishable. This is due to the fact that, as mentioned earlier, their pruning power
(ability to detect dead end configurations) is the same.

5.3 Planning Benchmarks

To assess the performance of directed unfolding on a wider range of problems with
realistic structure, we also considered some benchmarks from the 4th International
Planning Competition. These are described in PDDL (the Planning Domain Defi-
nition Language), which we translate into 1-bounded P/T-nets as explained in [4].
Note that runtimes reported below do not include the time for this translation.

The top two rows of Fig. 7, show results for 29 instances from the IPC-4
domain Airport (an airport ground-traffic control problem) and 30 instances
from the IPC-4 domain Pipesworld (a petroleum transportation problem), re-
spectively. The corresponding Petri nets range from 49 places and 18 transitions
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Fig. 7. Results for Planning Benchmarks Airport (top row) and Pipesworld (middle
row), and the Openstacks problem (bottom row)

(Airport instance 1) to 3,418 places and 2,297 transitions (Airport instance
28). The length of optimal solutions, where known, range from 8 to over 160.

Graphs in the first and second columns show cumulative distributions of the
number of dequeued events and runtime, respectively, for four different configu-
rations of Mole: using no heuristic (i.e., h ≡ 0), hmax, hFF and hsum. Evidently,
directed unfolding is much more efficient than blind, in particular when using
the inadmissible hFF and hsum heuristics. The original version of Mole fails to
solve 9 instances in the Airport domain, running out of either time (600s) or
memory (1 Gb), while Mole with hmax solves all but 4 and Mole with hFF and
hsum all but 2 instances (only one instance remains unsolved by all configura-
tions). In the Pipesworld domain, blind Mole solves only 11 instances, while
guided with hFF it solves all but 1.

Graphs in the last column compare the runtimes of the two faster, suboptimal,
Mole configurations with three domain-independent planning systems that are
representative of the state-of-the-art. Note that these planning systems imple-
ment many sophisticated techniques besides heuristic search guidance. Also, all
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three are incomplete, in the sense that they are not guaranteed to find a solution
even when one exists. While the directed unfolder is generally not the fastest, it
is not consistently the slowest either. Moreover, with the hFF heuristic, Mole is
very good at finding short solutions in the Pipesworld domain: in 14 of the 30
instances it finds solutions that are shorter than the best found by any subopti-
mal planner that participated in the competition, and only in one instance does
it find a longer solution. In the Airport domain, all planners find solutions of
the same length.

The last row of Fig. 7 shows results for an encoding of the Open stacks

problem (a production scheduling problem) as a planning problem. A different
encoding of this problem (which disabled all concurrency) was used in the fifth
planning competition. The corresponding Petri nets all have 65 places and 222
transitions, but differ in their initial markings. Optimal solution lengths vary
between 35 and 40 firings. This is an optimisation problem: solving it optimally
is NP-complete [26], but only finding any solution is quite trivial. We include this
benchmark specifically to illustrate that restricting search to optimal solutions
can be very costly. The gap between suboptimal and optimal length unfolding
is spectacular: Mole using the hsum heuristic consistently spends around 0.1
seconds solving each problem, while with the admissible hmax heuristic or no
heuristic at all it requires over 50s. This shows that directed unfolding, which
unlike breadth-first search is not confined to optimal solutions, can exploit the
fact that non-optimal Openstacks is an easy problem.

6 Conclusion, Related and Future Work

We have described directed unfolding, which incorporates heuristic search straight
into an on-the-fly reachability analysis technique specific to Petri nets. We proved
that the ERV unfolding algorithm can benefit from using heuristic search strate-
gies, whilst preserving finiteness and completeness of the generated prefix. Such
strategies are effective for on-the-fly reachability analysis, as they significantly re-
duce the prefix explored to find a desired marking or to prove that none exists.
We demonstrated that suitable heuristic functions can be automatically extracted
from the original net. Both admissible and non-admissible heuristics can be used,
with the former offering optimality guarantees. Experimental results show that di-
rected unfolding provides a significant performance improvement over the original
breadth-first implementation of ERV featured in Mole.

Edelkamp and Jabbar [27] recently introduced a method for directed model-
checking Petri nets. It operates by translating the deadlock detection problem
into a metric planning problem, solved using off-the-shelf heuristic search plan-
ning methods. These methods, however, do not exploit concurrency in the pow-
erful way that unfolding does. In contrast, our approach combines the best of
heuristic search and Petri net reachability analysis. Results on planning bench-
marks show that directed unfolding with inadmissible heuristics is competitive
(in the sense of not being consistently outperformed) with some of the current
state-of-the-art domain-independent planners.
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The equivalent of read-arcs is a prominent feature of many planning problems.
In our translation to Petri nets, these are represented by the usual “consume-
and-produce” loop, which forces sequencing of events that read the same place
and thus may reduce the level of concurrency (although this does not happen
in the two domains we used in our experiments; they are exceptional in that
respect). We believe that a treatment of read-arcs that preserves concurrency,
such as the use of place replication [28], is essential to improve the performance
of directed unfolding applied to planning in the general case, and addressing this
is a high priority item on our future work agenda.

In this paper, we have measured the cost of a configuration C by its cardinality,
i.e., g(C) = |C|. Or similarly, g(C) =

∑
e∈C c(e) with c(e) = 1 ∀e ∈ E. These

results extend to transitions having arbitrary non-negative cost values, i.e., c :
E → IR. Consequently, using any admissible heuristic strategy, we can find
the minimum cost firing sequence leading to tR. As in the cardinality case, the
algorithm is still correct using non-admissible heuristics, but does not guarantee
optimality. The use of unfolding for solving optimisation problems involving cost,
probability and time, is a focus of our current research.

We also plan to use heuristic strategies to guide the unfolding of higher level
Petri nets, such as coloured nets [29]. Our motivation, again arising from our
work in the area of planning, is that our translation from PDDL to P/T-nets
is sometimes the bottleneck of our planning via unfolding approach [4]. Well
developed tools such as punf

10 could be adapted for experiments in this area.
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Abstract. In a seminal paper, McMillan proposed a technique for con-
structing a finite complete prefix of the unfolding of bounded (i.e., finite-
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Fig. 1. (a) A safe contextual net; (b) its encoding by replacing read arcs with con-
sume/produce loops; (c) its concurrency-preserving PR-encoding

number of reachable states. McMillan’s algorithm constructs a finite complete
prefix, i.e., a subnet of the unfolding such that each marking reachable in the
original net corresponds to some concurrent set of places in such a prefix.

Contextual nets [14], also called nets with test arcs [5], activator arcs [9] or read
arcs [18], extend ordinary nets with the possibility of checking for the presence
of tokens without consuming them. The possibility of faithfully representing
concurrent read accesses to resources allows one to model in a natural way
phenomena like concurrent access to shared data (e.g. reading in a database) [17],
to provide concurrent semantics to concurrent constraint programs [13], to model
priorities [8] or to conveniently analyse asynchronous circuits [19].

When working with contextual nets, if one is interested only in reachable
markings, it is well-known that read arcs can be replaced by consume/produce
loops (see Fig. 1a and b), obtaining an ordinary net with the same reachability
graph. However, when one unfolds the net obtained by this transformation, the
number of transitions and places might explode due to the sequentialization
imposed on readers. A cleverer encoding, proposed in [19] and hereafter referred
to as the place-replication encoding (PR-encoding), consists of creating “private”
copies of the read places for each reader (see Fig. 1c). In this way, for safe nets
the encoding does not lead to a loss of concurrency, and thus the explosion of
the number of events and places in the unfolding can be mitigated.

A construction that applies to contextual nets and produces an unfolding
that is itself a contextual (occurrence) net has been proposed independently
by Vogler, Semenov and Yakovlev in [19] and by the first two authors with
Montanari in [3]. In particular, the (prefixes of the) unfolding obtained with this
construction can be much smaller than in both encodings mentioned above.

Unfortunately, as discussed in [19], McMillan’s construction of the finite com-
plete prefix does not extend straightforwardly to the whole class of contextual
nets. The authors of [19] propose a natural generalization of McMillan’s algo-
rithm which takes into account some specific features of contextual nets, but they
show that their approach only works for contextual nets that are read-persistent,
i.e., where there is no interference between preconditions and context conditions:
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any two transitions t1 and t2 such that t1 consumes a token that is read by t2
cannot be enabled at the same time. Similarly, the algorithm proposed in [2],
where McMillan’s approach was generalised to graph grammars, is designed for
a restricted class of grammars, which are the graph-grammar-theoretical coun-
terpart of read-persistent nets.

The algorithms of [19] and [2] fail on non-read-persistent systems because,
in general, a transition of a contextual occurrence net can have more than one
possible causal history (or local configuration, according to [19]): this happens,
for example, when a transition consumes a token which could be read by another
transition. In this situation, McMillan’s original cut-off condition (used by the
algorithms in [19] and [2]) is not adequate anymore, because it considers a single
causal history for each event (see also the example discussed in Sect. 3).

In this paper, we present a generalization of McMillan’s construction that ap-
plies to arbitrary bounded semi-weighted contextual nets, i.e., Place/Transition
contextual nets where the initial marking and the post-set of each transition are
sets rather than proper multisets: this class of nets strictly includes safe con-
textual nets. The proposed algorithm explicitly takes into account the possible
histories of events, and generates from a finite bounded semi-weighted contex-
tual net a finite complete prefix of its unfolding. The same constructions and
results could have been developed for general weighted contextual nets, at the
price of some technical (not conceptual) complications.

As in McMillan’s original work, the key concept here is that of a cut-off event,
which is, roughly, an event in the unfolding that, together with its causal history,
does not contribute to generating new markings. We prove that the natural
generalisation of the notion of cut-off that takes into account all the possible
histories of each event is theoretically fine, in the sense that the maximal cut-
off-free prefix of the unfolding is complete. However, this characterisation is not
constructive in general, since an event can have infinitely many histories. We
show how this problem can be solved by restricting, for each event, to a finite
subset of “useful” histories, which really contribute to generating new states.

The interest of this approach is twofold. From a theoretical point of view,
the resulting algorithm extends [19] since it applies uniformly to the full class of
contextual nets (and, for read-persistent nets, it specialises to [19]). From a prac-
tical point of view, with respect to the approach based on the construction of the
complete finite prefix of the PR-encoding, we foresee several improvements. For
safe nets the proposed technique produces a smaller unfolding prefix (once the
histories recorded for generating the prefix are disregarded) and it has a com-
parable efficiency (we conjecture that the histories considered when unfolding a
safe contextual net correspond exactly to the events obtained by unfolding its
PR-encoding). Additionally, our technique appears to be more efficient for non-
safe nets and it looks sufficiently general to be extended to other formalisms able
to model concurrent read accesses to part of the state, like graph transformation
systems, for which the encoding approach does not seem viable.

The paper is structured as follows. In Sect. 2, we introduce contextual nets
and their unfolding semantics. In Sect. 3, we characterise a finite complete prefix
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of the unfolding for finite-state contextual nets, relying on a generalised notion
of cut-off and in Sect. 4 we describe an algorithm for constructing a complete
finite prefix. Finally, in Sect. 5 we draw some conclusions.

2 Contextual Nets and Their Unfolding

In this section, we introduce the basics of marked contextual P/T nets [17,14]
and we review their unfolding semantics as defined in [19,3].

2.1 Contextual Nets

We first recall some notation for multisets. Let A be a set; a multiset of A is a
function M : A→ N. It is called finite if {a ∈ A : M(a) > 0} is finite. The set of
finite multisets of A is denoted by µ∗A. The usual operations on multisets, like
multiset union ⊕ or multiset difference �, are used. We write M ≤M ′ if M(a) ≤
M ′(a) for all a ∈ A. If M ∈ µ∗A, we denote by [[M ]] the multiset defined, for all
a ∈ A, as [[M ]](a) = 1 if M(a) > 0, and [[M ]](a) = 0 otherwise. A multirelation
f : A ↔ B is a multiset of A × B. It is called finitary if {b ∈ B : f(a, b) > 0}
is a finite set for all a ∈ A, i.e., if any element a ∈ A is related to finitely many
elements b ∈ B. A finitary multirelation f induces in an obvious way a function
µf : µ∗A→ µ∗B, defined as µf(M)(b) =

∑
a∈A M(a) · f(a, b) for M ∈ µ∗A and

b ∈ B. In the sequel we will implicitly assume that all multirelations are finitary.
A relation r : A ↔ B is a multirelation r where multiplicities are bounded by
one, namely r(a, b) ≤ 1 for all a ∈ A and b ∈ B. Sometimes we shall write simply
r(a, b) instead of r(a, b) = 1.

Definition 1 ((marked) contextual net). A (marked) contextual Petri net
(c-net) is a tuple N = 〈S, T, F, C, m〉, where

– S is a set of places and T is a set of transitions;
– F = 〈Fpre, Fpost〉 is a pair of finitary multirelations Fpre, Fpost : T ↔ S;
– C : T ↔ S is a finitary relation, called the context relation;
– m ∈ µ∗S is a finite multiset, called the initial marking.

In general, any multiset of S is called a marking. The c-net is called finite if T
and S are finite sets. Without loss of generality, we assume S∩T = ∅. Moreover,
we require that for each transition t ∈ T , there exists a place s ∈ S such that
Fpre(t, s) > 0.

In the following, when considering a c-net N , we will implicitly assume that
N = 〈S, T, F, C, m〉.

Given a finite multiset of transitions A ∈ µ∗T we write •A for its pre-set
µFpre(A) and A• for its post-set µFpost(A). Moreover, A denotes the context of A,
defined as A = [[µC(A)]]. The same notation is used to denote the functions from
S to the powerset P(T ), i.e., for s ∈ S we define •s = {t ∈ T : Fpost(t, s) > 0},
s• = {t ∈ T : Fpre(t, s) > 0}, s = {t ∈ T : C(t, s)}.
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Fig. 2. (a) A contextual net N0 and (b) its unfolding Ua(N0)

An example of a contextual net, inspired by [19], is depicted in Fig. 2a. Read
arcs are drawn as undirected lines. For instance, referring to transition t1 we
have •t1 = s1, t1

• = s3 and t1 = s2.
For a finite multiset of transitions A to be enabled at a marking M , it is

sufficient that M contains the pre-set of A and one additional token in each
place of the context of A. This corresponds to the intuition that a token in a
place (like s in Fig. 1a) can be used as context concurrently by many transitions;
instead, if read arcs are replaced by consume/produce loops (as in Fig. 1b) the
transitions needing a token in place s can fire only one at a time.

Definition 2 (enabling, step). Let N be a c-net. A finite multiset of transi-
tions A ∈ µ∗T is enabled at a marking M ∈ µ∗S if •A⊕ A ≤ M . In this case,
the execution of A in M , called a step (or a firing when it involves just one
transition), produces the new marking M ′ = M � •A⊕A•, written as M [A〉M ′.

A marking M of a c-net N is called reachable if there is a finite sequence of steps
leading to M from the initial marking, i.e., m [A0〉M1 [A1〉M2 . . . [An〉M .

Definition 3 (bounded, safe and semi-weighted nets). A c-net N is called
n-bounded if for any reachable marking M each place contains at most n tokens,
namely M(s) ≤ n for all s ∈ S. It is called safe if it is 1-bounded and Fpre,
Fpost are relations (rather than general multirelations). A c-net N is called semi-
weighted if the initial marking m is a set and Fpost is a relation.

Observe that requiring Fpre (resp. Fpost) to be relations amounts to asking that
for any transition t ∈ T , the pre-set (resp., post-set) of t is a set, rather than a
general multiset.
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We recall that considering semi-weighted nets is essential to characterise the
unfolding construction, in categorical terms, as a coreflection [4]. However, in
this paper, the choice of taking semi-weighted nets rather than general weighted
nets is only motivated by the need of simplifying the presentation: while the pre-
sentation extends smoothly from safe to semi-weighted nets, considering general
weighted nets would require some technical complications in the definition of the
unfolding (Definition 11), related to the fact that an occurrence of a place would
not be completely identified by its causal history.

2.2 Occurrence c-Nets

Occurrence c-nets are safe c-nets satisfying certain acyclicity and well-founded-
ness requirements. To define what this means, we will next introduce the notions
of causality and asymmetric conflict.

Causality is defined as for ordinary nets, with an additional clause stating
that transition t causes t′ if it generates a token in a context place of t′.

Definition 4 (causality). Let N be a safe c-net. The causality relation in N
is the least transitive relation < on S ∪ T such that

1. if s ∈ •t then s < t;
2. if s ∈ t• then t < s;
3. if t• ∩ t′ = ∅ then t < t′.

Given x ∈ S ∪ T , we write !x" for the set of causes of x in T , defined as
!x" = {t ∈ T : t ≤ x} ⊆ T , where ≤ is the reflexive closure of <.

For instance, in Fig. 2a, the three cases of Definition 4 are exemplified by s0 < t0,
t0 < s2, and t0 < t1.

We say that a transition t is in asymmetric conflict with t′, denoted t↗ t′, if
whenever both t and t′ fire in a computation, t fires before t′. The paradigmatic
case is when transition t′ consumes a token in the context of t, i.e., when t∩•t′ =
∅, as for transitions t′1 and t′2 in Fig. 2b (see [4,16,10,19]). This situation cannot
be captured adequately by the standard causality and conflict relations, and it
is the reason of the possible existence of several causal histories for an event, the
phenomenon typical of contextual nets mentioned in the introduction.

Note that the fact that whenever both t and t′ fire, t fires before t′ trivially holds
when t < t′, because t cannot follow t′ in a computation, and (with t and t′ in in-
terchangeable roles) alsowhen t and t′ have a common precondition, since they will
never fire in the same computation. For technical convenience the definition of rela-
tion↗ takes into account these two situations as well, with the consequence that an
ordinary symmetric conflict amounts to an asymmetric conflict in both directions.

Definition 5 (asymmetric conflict). Let N be a safe c-net. The asymmetric
conflict relation in N is the binary relation ↗ on T defined as

t↗ t′ iff t ∩ •t′ = ∅ or (t = t′ ∧ •t ∩ •t′ = ∅) or t < t′.

For X ⊆ T , ↗X denotes the restriction of ↗ to X, i.e., ↗X=↗ ∩ (X ×X).
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As an example, consider Fig. 2b. There, we have t′1 ↗ t′2 because t′1 in order to
fire requires a token on s′2, which is consumed by t′2; moreover, t′1 ↗ t′′1 (and vice
versa) because both transitions consume a token from s′1; and finally, t′0 ↗ t′2,
because the former is a causal predecessor of the latter.

An occurrence c-net is a safe c-net that exhibits an acyclic behaviour, satis-
fying suitable conflict-freeness requirements.

Definition 6 (occurrence c-nets). An occurrence c-net is a safe c-net N
such that

– each place s ∈ S is in the post-set of at most one transition, i.e., |•s| ≤ 1;
– the causal relation < is irreflexive and its reflexive closure ≤ is a partial

order, such that !t" is finite for any t ∈ T ;
– the initial marking is the set of ≤-minimal places, i.e., m = {s ∈ S : •s = ∅};
– ↗
t� is acyclic for all t ∈ T .

An example of an occurrence c-net can be found in Fig. 2b. The last condition
of Definition 6 corresponds to the requirement of irreflexivity for the conflict
relation in ordinary occurrence nets. In fact, if a transition t has a ↗ cycle in
its causes then it can never fire, since in an occurrence c-net, the order in which
transitions appear in a firing sequence must be compatible with the asymmetric
conflict relation. This intuitive interpretation of cycles of asymmetric conflict as
conflicts over sets of transitions is formalised as follows:

Definition 7 (conflict). Let N be a c-net. The conflict relation # ⊆ P(T )
associated to N is defined as follows, where A is any finite subset of T :

t0 ↗ t1 ↗ . . .↗ tn ↗ t0
#{t0, t1, . . . , tn}

#(A ∪ {t}) t ≤ t′

#(A ∪ {t′})

In ordinary nets, only symmetric conflicts can occur: they are represented by
cycles of asymmetric conflicts of length two.

The notion of concurrency is the natural generalisation of the one for ordinary
nets. Note that, because of the presence of contexts, some places that a transition
needs in order to fire (the contexts) can be concurrent with the places it produces.

Definition 8 (concurrency relation). Let N be an occurrence c-net. A finite
set of places M ⊆ S is called concurrent, written conc(M), if

1. ∀s, s′ ∈M. ¬(s < s′);
2. !M" =

⋃
{!s" : s ∈M} is conflict-free, i.e., ¬#A for any A ⊆ !M".

It can be shown that, as for ordinary occurrence nets, a set of places M is
concurrent if and only if there is some reachable marking in which all the places
of M contain one token.
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From now on, consistently with the literature, we shall often call the transi-
tions of an occurrence c-net events.

Definition 9 (configuration). Let N be an occurrence c-net. A set of events
C ⊆ T is called a configuration if

1. ↗C is acyclic;
2. {t′ ∈ C : t′ ↗ t} is finite for all t ∈ C;
3. C is left-closed w.r.t. <, i.e., for all t ∈ C, t′ ∈ T , t′ < t implies t′ ∈ C.

We denote by Conf (N) the set of all configurations of N , equipped with the
ordering defined as C $ C′, if C ⊆ C′ and ¬(t′ ↗ t) for all t ∈ C, t′ ∈ C′ \ C.

Furthermore, two configurations C1, C2 are said to be in conflict (C1#C2)
when there is no C ∈ Conf (N) such that C1 $ C and C2 $ C.

The notion of configuration characterises the possible (concurrent) computations
of an occurrence c-net. It can be proved that a subset of events C is a config-
uration if and only if the events in C can all be fired, starting from the initial
marking, in any order compatible with ↗. Observe that this includes also the
infinite computations, as C is not required to be finite.

The relation $ is a computational order of configurations: C $ C′ if C can
evolve and become C′. Remarkably, this order is not simply subset inclusion
since a configuration C cannot be extended with an event t′ if t′ ↗ t for some
t ∈ C, since t′ cannot fire after t in a computation. Two configurations are in
(symmetric) conflict if they do not have a common extension. More concretely
C1#C2 when there exists t1 ∈ C1 and t2 ∈ C2 \ C1 such that t2 ↗ t1, or the
symmetric condition holds.

To illustrate the definition, consider again Fig. 2b. The set C1 = {t′0, t′2} is
a configuration because t′0 can fire first and then t′2. Also C2 = {t′0, t′1, t′2} is a
configuration; its events can fire in the order t′0, t′1, t′2. However, C1 $ C2 does
not hold even though C1 ⊆ C2 because t′1 must necessarily fire before t′2 in any
computation containing both events.

Notice also that all three conditions in Definition 9 are necessary. For instance,
{t′1, t′′1} is not a configuration in Fig. 2b because it violates Condition 1, as it
contains a conflict, and, e.g. {t′2} is not a configuration because it violates Con-
dition 3: it does not represent a complete computation. The need for Condition 2
is slightly trickier to explain. Consider the (infinite) occurrence net in Fig. 3. For
each i ≥ 1, since s′ ∈ ti, we have ti ↗ t′. Therefore, the set {t′} ∪ { ti | i ≥ 1 }
is not a configuration: it does not represent a computation because its elements
cannot be ordered in such a way that t′ will eventually fire.

Given a configuration C and an event t ∈ C, the history of t in C is the set
of events that must precede t in the (concurrent) computation represented by
C. For ordinary nets the history of an event t coincides with the set of causes
!t", independently of the configuration where t occurs. Instead, for c-nets, due
to the presence of asymmetric conflicts between events, an event t that occurs
in more than one configuration may have different histories. The next definition
formalises this fact.
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Fig. 3. Occurrence net illustrating condition 2 of Definition 9

Definition 10 (history). Let N be an occurrence net. Given a configuration
C and an event t ∈ C, the history of t in C, denoted by C[[t]], is defined as

C[[t]] = {t′ ∈ C : t′(↗C)∗t}.

The set of all histories of an event t, namely, {C[[t]] : C ∈ Conf (N) ∧ t ∈ C}
is denoted by Hist(t).

For instance, in Fig. 2b, we have t′0 ↗ t′2 and t′1 ↗ t′2. There are several configura-
tions containing t′2, such as C1 = {t′0, t′2}, C2 = {t′0, t′1, t′2}, and C3 = {t′0, t′2, t′′0},
and t′2 has two histories: H1 = C1[[t′2]] = C3[[t′2]] = {t′0, t′2}, and H2 = C2[[t′2]] =
{t′0, t′1, t′2}. In history H2 event t′1 fires, using the token on s′2 in its context, while
in H1 t′1 did not fire.

2.3 Unfolding

Given a semi-weighted c-net N , an unfolding construction allows one to obtain
an occurrence c-net Ua(N) that describes the behaviour of N [3,19]. As for
ordinary nets, each event in Ua(N) represents a particular firing of a transition
in N , and places in Ua(N) represent occurrences of tokens in the places of N .
The unfolding is equipped with a mapping to the original net N , relating each
place (event) of the unfolding to the corresponding place (transition) in N .

The unfolding, which is abstractly characterised as the maximal branching
process of a net [6], can be constructed inductively by starting from the initial
marking of N and then by adding, at each step, an occurrence of each transition
of N that is enabled by (the image of) a concurrent subset of the places already
generated.

Intuitively, our definition gives each place and event a “canonical” name. Each
place in the unfolding is a pair whose second element points to the place of the
original net it corresponds to. In order to distinguish different occurrences of
tokens, the first component records the “history” of the token, i.e., the event
that generates it. Similarly, each event is a triple recording the precondition and
context used in the firing, and the corresponding transition in the original net.
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Fig. 4. The inductive rules defining the unfolding of a c-net

Definition 11 (unfolding). Let N = 〈S, T, F, C, m〉 be a semi-weighted c-net.
The unfolding Ua(N) = 〈S′, T ′, F ′, C′, m′〉 of the net N is the (minimal) occur-
rence c-net defined by the inductive rules in Fig. 4. The rules define also the
folding morphism fN = 〈fT , fS〉 : Ua(N) → N consisting of a pair of functions
fT : T ′ → T and fS : S′ → S mapping the unfolding to the original net.

As said before, places and events in the unfolding of a c-net represent tokens
and firings of transitions in the original net, respectively. Initially, a new place
with empty history 〈∅, s〉 is generated for each place s in the initial marking.
Moreover, a new event t′ = 〈Mp, Mc, t〉 is inserted in the unfolding whenever
we can find a concurrent set of places (precondition Mp and context Mc) that
corresponds, in the original net, to a marking that enables t. For each place si in
the post-set of such t, a new place 〈t′, si〉 is generated, belonging to the post-set
of t′. The folding morphism f maps each place (event) of the unfolding to the
corresponding place (transition) in the original net.

An initial part of the unfolding of the net N0 in Fig. 2a is represented in
Fig. 2b. The folding morphism from Ua(N0) to N0 is implicitly represented by
the name of the items in the unfolding.

The unfolding is complete with respect to the behaviour of the original net in
the following sense.

Proposition 1 (completeness of the unfolding). Let N be a c-net and let
Ua(N) = 〈S′, T ′, F ′, C′, m′〉 be its unfolding. A marking M ∈ µ∗S is coverable in
N iff there exists a concurrent subset X ⊆ S′ such that M = µfS(X).

The above notion of completeness, which will be used in the rest of the paper, is
slightly weaker than that of [11,19], for example. In fact, the notion of complete-
ness for unfolding prefixes considered in the mentioned papers imposes, not only
that every marking reachable in the original net N is represented in the prefix,
but also that every transition firable in N has a representative in the prefix. The
results could be easily adapted to this stronger notion of completeness.

3 Defining a Complete Finite Prefix

To obtain a finite prefix of the unfolding that is still complete in the sense of
Proposition 1, the idea is to avoid including “useless” events in the unfolding,
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Fig. 5. (a) An incomplete and (b) a complete enriched prefix for the net in Fig. 2

where useless means events that do not contribute to generating new markings.
To this aim McMillan introduced the notion of “cut-off” for ordinary nets, which
is roughly an event whose history does not generate a new marking. Then the
complete finite prefix is the greatest prefix without cut-offs. This definition of cut-
off event has to be adapted to the present framework, since for contextual nets
an event may have different histories, or, using McMillan terminology, different
local configurations.

Considering only the minimal history of an event, i.e., its set of causes, in
the definition of cut-off leads to a finite but not necessarily complete prefix,
as observed in [19]. For instance, consider net N0 in Fig. 2a. According to the
ordinary definition of cut-off, in its unfolding Ua(N0) shown in Fig. 2b the event
t′2 would be a cut-off since its minimal history {t′0, t′2} generates a marking
corresponding to the initial marking. Graphically, cut-offs are marked by using
double lines. Thus the largest prefix without cut-offs would be the net O0 in
Fig. 5a, which is not complete since it does not “represent” the marking s0⊕ s3,
reachable in N0.

Considering instead all the possible histories of an event leads to a character-
isation of a prefix which is finite and complete, even if this characterisation is
not constructive since there can be infinitely many possible histories for a single
event (see [2] or the net depicted in Fig. 3). In the present paper, we suggest to
record for each event only a subset of histories which are considered “useful to
produce new markings”.

To formalise this fact we introduce a notion of occurrence net decorated with
possible histories for the involved events.

Definition 12 (enriched occurrence net). An enriched occurrence net is a
pair E = 〈N, χ〉, where N is an occurrence net and χ : T → P(P(T )) is a
function such that for any t ∈ T , ∅ = χ(t) ⊆ Hist(t).
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Fig. 6. Occurrence net illustrating Definition 12

The enriched occurrence net E is called closed if for all t, t′ ∈ T , for any
C ∈ χ(t) if t′ ∈ C then C[[t′]] ∈ χ(t′).

A configuration of E is a configuration C ∈ Conf (N) such that C[[t]] ∈ χ(t)
for all t ∈ C. The set of configurations of E is denoted by Conf (E).

As an example, consider the enriched occurrence net in Fig. 6, where for any
event t the set of histories χ(t) is indicated next to the event. Note that this net
is closed. Instead, removing the history {t1} from χ(t1) would result in a net
that is not closed. In fact, since {t1, t2} ∈ χ(t2), transition t2 can be fired in a
computation after firing only t1. Thus t1 must be firable alone. This would be
in contradiction with the fact that the only remaining history of t1 is {t′, t1},
which says that transition t1 can be fired only after t′. Concerning the notion
of configuration, note that for the net in Fig. 6, {t′, t1} is a configuration while
{t′, t1, t2} is not.

Often, given an enriched occurrence net E we will denote its components by
NE and χE . If the enriched net is Ei, we will denote its components Ni and χi.

From now on, N = 〈S, T, F, C, m〉 is a fixed semi-weighted c-net, Ua(N) =
〈S′, T ′, F ′, C′, m′〉 is its unfolding, and fN : Ua(N)→ N is the folding morphism.

Definition 13 (enriched event, enriched prefix). An enriched event of the
unfolding is a pair 〈t, Ht〉, where t ∈ T ′ is an event of the unfolding, and Ht ∈
Hist(t) is one of its histories. An enriched prefix of the unfolding Ua(N) is
any closed enriched occurrence net E such that NE is a prefix of Ua(N). We
will say that the enriched prefix E contains an enriched event 〈t, Ht〉 and write
〈t, Ht〉 ∈ E if t ∈ TE and Ht ∈ χE(t).

An example of an enriched prefix of Ua(N0) in Fig. 2b is given in Fig. 5b.
A generalisation of the natural prefix ordering over occurrence nets can be

defined on enriched occurrence nets.

Definition 14 (prefix ordering). Given two enriched occurrence nets E1 and
E2, we say that E1 is a prefix of E2, written E1 % E2, if N1 is a prefix of N2,
and for any t ∈ T1, χ1(t) ⊆ χ2(t).

Lemma 1 (enriched prefixes form a lattice). The set of closed enriched
prefixes of Ua(N) endowed with the prefix ordering % is a complete lattice.
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Proof. Let {Ei}i∈I be a set of enriched prefixes of Ua(N). Then, we claim that
their least upper bound

⊔
i∈I Ei is E = 〈NE , χE〉, where NE is the component-

wise union of the nets Ni, and, for any event t in N , χE(t) =
⋃

{i∈I:t∈Ni} χi(t).
Clearly, E is a well-defined enriched prefix. We only need to show that E is

closed. Then the fact that it is the greatest lower bound for {Ei}i∈I is obvious.
Let t be an event in N , let C ∈ χE(t) and take a t′ ∈ C[[t]]. We have to prove
that C[[t′]] ∈ χE(t′). Now, since χE(t) =

⋃
{i∈I:t∈Ni} χi(t), clearly C ∈ χEj (t)

for some j ∈ I. Since Ej is closed, this implies C[[t′]] ∈ χEj (t′) and therefore,
C[[t′]] ∈

⋃
{i∈I:t∈Ni} χi(t′) = χE(t′). ��

Additionally, it is easy to prove that given two enriched prefixes E1 and E2

E1 % E2 iff Conf (E1) ⊆ Conf (E2).

A configuration of Ua(N) represents a computation in the unfolding itself,
which in turn maps, via the folding morphism, to a computation of N . Hence
we can define the marking of N after a finite configuration of the unfolding.

Definition 15 (marking after a configuration). Let C ∈ Conf (Ua(N)) be a
finite configuration. We denote by mark(C) the marking of N after C, defined as
µfS(m′ ⊕

⊕
t∈C t• �

⊕
t∈C

•t).

The notion of cut-off is now defined for enriched events, thus taking histories
explicitly into account.

Definition 16 (cut-off). An enriched event 〈t, Ht〉 of the unfolding Ua(N) is
called a cut-off if mark(Ht) = m, the initial marking of N , or there is another
enriched event 〈t′, Ht′〉 of Ua(N) satisfying

(1) mark(Ht) = mark(Ht′) and
(2) |Ht′ | < |Ht|.

Let E be an enriched prefix of the unfolding. We say that E contains a cut-off
if some enriched event 〈t, Ht〉 ∈ E is a cut-off in the full unfolding Ua(N). The
enriched event 〈t, Ht〉 ∈ E is called a local cut-off in E if mark(Ht) = m or
there is an enriched event 〈t′, Ht′〉 ∈ E satisfying (1) and (2) above.

A different notion of cut-off which refines the one originally proposed by McMil-
lan by using adequate orders over configurations has been introduced in [7].
We are confident that this improvement can be integrated seamlessly into our
framework.

Note that the notion of cut-off is based on a quantification over all the enriched
events of the full unfolding and as such it is not effective. For an enriched event,
being a cut-off is a global property, independent of the specific prefix of the
unfolding we are considering. Clearly, every local cut-off in an enriched prefix E
is also a cut-off. This simple observation will be used several times in the sequel.

Definition 17 (truncation). The truncation Ta(N) of the unfolding is an en-
riched occurrence net defined as the greatest enriched prefix (w.r.t. prefix ordering
%) of the unfolding which does not contain cut-offs.
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The above definition is well-given thanks to the lattice structure of the set of
enriched prefixes ordered by %. However, it is not yet constructive. In Sect. 4, we
will present an algorithm for computing a complete finite prefix, possibly larger
than the truncation, using the notion of local cut-off.

We say that a configuration C of the unfolding includes a cut-off if for some
t ∈ C, the enriched event 〈t, C[[t]]〉 is a cut-off. The next fundamental lemma
shows that configurations of the unfolding containing cut-offs can be disregarded
without losing information about the reachable markings.

Lemma 2 (cut-off elimination). Let C ∈ Conf (Ua(N)) be a finite configura-
tion. There exists a finite configuration C′ without cut-offs such that mark(C) =
mark(C′).

Proof. We show that if C contains a cut-off then we can obtain a configuration
C′ such that mark (C) = mark (C′) and |C′| < |C|. Then the desired result
immediately follows.

In fact, let t ∈ C be an event such that 〈t, C[[t]]〉 is a cut-off. According
to Definition 16 there are two possibilities: (a) mark (C[[t]]) = m or (b) there
exists an event t′ in the unfolding and Ht′ ∈ Hist(t′) such that mark(C[[t]]) =
mark(Ht′) and |Ht′ | < |C[[t]]|.

Let us define H = ∅ in case (a) and H = Ht′ in case (b). Hence in both cases

mark (C[[t]]) = mark(H) and |H | < |C[[t]]|. (1)

We show by induction on k = |C| − |C[[t]]| that we can find a configuration
C′, with H $ C′, such that mark (C) = mark (C′) and |C′| − |H | = |C| − |C[[t]]|,
thus, by (1), |C′| < |C|.

(k = 0) Obvious, since C = C[[t]] one can just choose C′ = H .
(k → k + 1) In this case C \C[[t]] = ∅. Let t1 ∈ C \C[[t]], maximal w.r.t. (↗C)∗.

Therefore, C1 = C \{t1} is a configuration and C1[[t]] = C[[t]], by the choice of t1.
Thus by induction hypothesis there exists a configuration C′

1 s.t. H $ C′
1 and

mark (C1) = mark (C′
1) and |C′

1| − |H | = |C1| − |C1[[t]]|.

Since mark (C′
1) = mark (C1), the event fN (t1), executable in mark (C1), is still

executable in mark(C′
1) and thus C′

1 can be extended with an event t′1 in such
a way that C′ = C′

1 ∪ {t′1} satisfies all the requirements. ��

Using the lemma above we can show that the truncation is a complete prefix of
the unfolding.

Theorem 1 (completeness). The truncation Ta(N) is a complete prefix of the
unfolding, i.e., for any reachable marking M of N there is a finite configuration
C of Ta(N) such that mark (C) = M .

Proof. From the completeness of the (full) unfolding (see Proposition 1) it
follows that we can find a finite configuration C ∈ Conf (Ua(N)) such that
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mark(C) = M . By Lemma 2, there exists a finite configuration C′ in
Conf (Ua(N)) such that mark (C′) = mark(C), which does not contain cut-offs.
Such a configuration must be a configuration of Ta(N). Otherwise, we could con-
struct a cut-off-free prefix of the unfolding greater than Ta(N). In fact, C′ itself
can be seen as an enriched prefix E of Ua(N), where NE is the subnet of the
unfolding including the events in C′ and χE(t) = {C′[[t]]} for any t ∈ C′. Thus,
if C′ were not a configuration of Ta(N), the enriched prefix Ta(N) � E would
be larger than Ta(N) and still without cut-offs, contradicting the definition of
Ta(N). ��

For finite n-bounded nets the number of reachable states of the net is finite and
thus one can prove that the truncation of its unfolding is finite. We get this
as a corollary of a more general result which will be also useful in proving the
termination of the algorithm for the complete prefix.

Theorem 2 (finiteness). Let N be a finite n-bounded c-net and let E be an
enriched prefix of the unfolding free of local cut-offs. Then E is finite.

Proof. For any event t in E let us fix a history Ht ∈ χP (t). By definition E is
local cut-off free and thus for any t

for any t′ in TE , if mark(Ht) = mark(Ht′) then |Ht′ | ≥ |Ht|.

Let µnS be the set of n-bounded markings and consider the function τ : TE →
µnS, defined by τ(t) = mark (Ht). By the condition above, it is easy to see that
τ(t1) = τ(t2) implies |Ht1 | = |Ht2 |. Since the codomain of τ is finite, we can
take the maximum k of the cardinalities |Ht| for t in E.

Now, notice that for any event t clearly depth(t) ≤ |Ht| ≤ k. Hence E is
included in the prefix of Ua(N) of depth k, which in turn is finite (since the
initial marking is finite). ��

Recalling that any local cut-off is a cut-off and thus that Ta(N) is free from local
cut-offs we have the following.

Corollary 1. Let N be a finite n-bounded net. The truncation Ta(N) is finite.

For instance, consider the net N0 and its unfolding Ua(N0) in Fig. 2. The
truncation Ta(N0) is the enriched prefix depicted in Fig. 5b. Note that it in-
cludes the event t′2. In fact, t′2 has two possible histories: the minimal history
H2 = !t′2" = {t′0, t′2} and H ′

2 = {t′0, t′1, t′2}. While 〈t′2, H2〉 is a cut-off, the pair
〈t′2, H ′

2〉 is not, and thus it is included in the truncation.

4 Computing the Prefix

In this section, we describe how to construct a prefix, possibly larger than Ta(N),
but still finite and complete. The construction builds incrementally a finite pre-
fix of the full unfolding of a semi-weighted c-net N by starting from the initial
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Fig. 7. Predecessors w.r.t. asymmetric conflict of an event t

marking and by iteratively adding new events representing occurrences of transi-
tions of N . During the construction, for each event t in Fin , the currently built
part of the prefix, we also record a current set of histories χFin(t), thus making
the prefix under construction an enriched occurrence net. We record in a set pe
the enriched events which are candidates for being included in Fin , i.e., the pairs
〈t, H〉 where t is an event enabled in Fin and H is one of its current possible
histories.

Let us first illustrate how the histories of an event t in a given enriched
prefix E can be obtained from the histories of the events that are in direct
asymmetric conflict with t. Consider a situation as in Fig. 7, which illustrates a
part of the closed prefix E. A direct predecessor of t w.r.t. asymmetric conflict
is either a cause (such as t1, which produces a token that is read, or t2, which
produces a token that is consumed by t) or an event as t3 that reads a token
consumed by t.

The histories for t can be constructed as follows: for every direct cause ti
of t choose any history Hi of ti, while for every transition tj that is in direct
asymmetric conflict with t (but not a cause) optionally take any history Hj .
Whenever such histories are pairwise not in conflict (see Definition 9) then the
set H = {t} ∪

⋃
i Hi, the union of all such histories (and t), is called a history

for t consistent with E.
Note that H ∈ Hist(t) and furthermore adding H to E keeps the prefix closed,

since for every transition t′ ∈ H the history H [[t′]] is already contained in E. This
is a consequence of the fact that for any ti we have H [[ti]] = Hi since no two
histories in the union are in conflict.

The algorithm proceeds as follows. Again we use the notation of Definition 11.

Initialization. Start with Fin := m′ and let χFin be the empty function. An
event t = 〈Mp, Mc, t̂〉 is enabled in Fin whenever conc(Mp ∪Mc). Now let
pe be the set of all pairs of the form 〈t, Ht〉, where t is an event enabled in
Fin and Ht is a history of t consistent with Fin. Initially the only history of
t is {t}.

Loop. While pe = ∅ do: Choose a pair 〈t, Ht〉 ∈ pe such that |Ht| is minimal.
Remove this pair from pe and consider the prefix Fin ′ obtained by inserting
〈t, Ht〉 in Fin , i.e.,
– if t is already present in Fin then add the history Ht to χFin (t);
– otherwise add t to Fin and set χFin ′(t) := {Ht}.
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Then
– If 〈t, Ht〉 is a local cut-off in Fin ′, do nothing and leave Fin unchanged.
– If 〈t, Ht〉 is not a local cut-off, set Fin := Fin ′.

Consider all events t′ contained either in Fin or in pe: Whenever t′ has
a new history Ht′ consistent with the updated prefix Fin , arising from
the insertion of Ht, then add 〈t′, Ht′〉 to pe. (Note that a propagation
phase is necessary to obtain all new histories.)
If a new transition has been added to Fin , update pe by adding all events
t which have become enabled in Fin in the last step together with all
their histories consistent with Fin .

Note that whenever a new pair 〈t′, Ht′〉 is added to pe, the size of Ht′ is
larger than the size of the history Ht under consideration. This is due to the
fact that these newly generated histories must include Ht. Observe also that all
pairs 〈t, H〉 with H ∈ Hist(t) are considered at some point, unless there exists a
local cut-off 〈t′, H ′〉 such that t′ ∈ H and H ′ = H [[t′]].

An efficient computation of the prefix should be based on suitable data struc-
tures. As observed above, a set of direct predecessors is needed for each event in
order to update its histories. Furthermore, histories should not be stored explic-
itly, but via pointer structures containing references back to the histories they
originated from. In addition, causality and conflict of histories can be computed
incrementally.

It can be shown that at every iteration of the algorithm the prefix Fin does not
contain local cut-offs. This can be used to prove the correctness and termination
of the algorithm.

Lemma 3. At every iteration of the algorithm Fin does not contain local cut-
offs.

Proof. (sketch) First observe that no local cut-off is inserted in Fin. Moreover,
it cannot be the case that the history Ht′ of an event t′ added to Fin at a
certain step n later becomes a cut-off due to the insertion of other histories of
events in the subsequent steps, since for each Ht′′ inserted at step n+ k we have
|Ht′ | ≤ |Ht′′ | (see also the remark above). ��

Theorem 3. If the net N is finite and n-bounded the algorithm terminates and
the prefix Fin it produces is complete.

Proof. Termination is an immediate consequence of Lemma 3 and of Theorem 2.
Completeness follows by Theorem 1, using the fact that

Conf (Ta(N)) ⊆ Conf (Fin)

which is equivalent to Ta(N) % Fin , since both prefixes are closed. In fact,
assume, by contradiction that there exists C ∈ Conf (Ta(N)) such that C ∈
Conf (Fin). Let k(C) denote the set of events in C such that the enriched event
〈t, C[[t]]〉 is not in Fin:

k(C) = {t | t ∈ C ∧ 〈t, C[[t]]〉 ∈ Fin}.
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By hypothesis C = ∅. Let t ∈ k(C) be minimal in k(C) with respect to ↗C and
let Ht = C[[t]].

As in the proof of Theorem 1 we can see Ht as an enriched prefix Et of the
unfolding containing only the events in Ht, each one with its history in Ht.

Now, by construction, C′ = Ht\{t} ∈ Conf (Fin) and Ht ∈ Conf (Fin). There-
fore, by the way we defined the algorithm and from the construction procedure
for new histories, we know that Ht must have been a history for t consistent
with the prefix constructed up to a certain point. Thus, the only possible rea-
son why Ht has not been included in Fin is that 〈t, Ht〉 was a local cut-off
in the partial prefix. More formally, we know that 〈t, Ht〉 is a local cut-off in
Fin �Ht.

Since any local cut-off is a cut-off, the enriched event 〈t, Ht〉, which is con-
tained in Ta(N), would be a cut-off. But this contradicts the fact that Ta(N) is
cut-off free. ��

The complete prefix of a c-net can be much smaller than the complete prefix
(constructed using McMillan’s algorithm) for the net where read arcs are re-
placed by consume/produce loops. In fact, consider a net Nn

1 analogous to the
net in Fig. 1a but with n readers t1, . . . , tn. Let Nn

2 be obtained encoding Nn
1

as an ordinary net by simply replacing read arcs with a consume/produce loops,
as in Fig. 1b. The unfolding of net Nn

2 includes kn = n + n(n − 1) + · · · + n!
events corresponding to the readers, since each event does not only record the
occurrence of a transition, but also its entire history, i.e., the sequence of all
events occurring before. Similarly, there are kn + 1 copies of event t′0. Note that
none of these events is a cut-off (according to McMillan’s definition), since any
two events generating the same marking have histories of equal size. Therefore
the complete prefix computed for Nn

2 is the unfolding itself. Instead, the com-
plete enriched prefix obtained from Nn

1 is the net Nn
1 itself, thus it has n + 2

transitions only; among them, t0, t1, . . . , tn have one history each, while t′0 has
2n histories. Even if still of exponential size, this prefix is much smaller than
the complete prefix of Nn

2 , essentially because the order in which the readers
occurred does not need to be recorded. Moreover, the underlying net obtained
by disregarding the histories is dramatically smaller in this case.

Now let Nn
3 be the PR-encoding of Nn

1 , as shown in Fig. 1c. The unfolding of
Nn

3 has one occurrence for each of the transitions t0, t1, . . . , tn and 2n occurrences
of t′0, none of which is a cut-off (hence, also in this case, the complete prefix is the
full unfolding). Thus there is a one-to-one correspondence between the histories
in the enriched prefix of Nn

1 and the events of the unfolding of Nn
3 . Still, the size

of the prefix of Nn
3 is exponential in n while the size of the prefix of Nn

1 , once
the histories are disregarded, is linear.

We conjecture that what happens for Nn
1 and Nn

3 is a completely general
fact, i.e., the histories of the complete enriched prefix of a safe c-net N are in
one-to-one correspondence with the events of the complete finite prefix of the
PR-encoding of N . In the case of non-safe nets, instead, the number of histories of
the complete enriched prefix of N can be much smaller than the number of events
of the complete finite prefix of the PR-encoding of N . As an example consider
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Fig. 8. A c-net N4 and its PR-encoding

the net N4 in Fig. 8a. Its truncation has two occurrences of transition t0 (either
t0 is caused by t1 or by t2), each with four histories (which specify whether
r1 or r2, or both, or none has been fired before). So in total we have eight
histories.

Now consider the PR-encoding of N4 in Fig. 8b. Unfolding the PR-encoding
we obtain four occurrences of place s1 (after firing t1 or t1, r1 or t2 or t2, r1) and
analogously four occurrences of place s2. All pairs of such places (one represent-
ing s1 and the other s2) are concurrent. Hence, we obtain 4 · 4 = 16 occurrences
of transition t0. An intuitive interpretation is as follows: the token in s is split
into two half-tokens in s1 and s2. Then some of the transitions in the unfolding
of the encoded net consume “half a token” produced by t1 and “half a token”
produced by t2.

More generally, consider a net N
(h,k)
4 like N4 one above, but with h writers

t1, . . . , th and k readers r1, . . . , rk. The truncation of N
(h,k)
4 has h occurrences

of t0 with a total number of histories h · 2k, since t0 can consume the token
produced by any of the h writers, after it has been read by any subset of the
k readers. Instead, the unfolding of the PR-encoding of N

(h,k)
4 includes (h · 2)k

occurrences of t0, since each occurrence of t0 consumes k tokens, and each of
these tokens can be produced by any of the h writers and it could have possibly
been produced/consumed by the corresponding reader.

We finally remark that histories are auxiliary information needed to build
the prefix, but they can safely be disregarded at the end of the construction.
For instance, histories are not needed for checking the coverability of a marking
m′ in a contextual prefix. Here, m′ is coverable iff the set of causes !m′" is a
configuration, which amounts to checking for the absence of asymmetric-conflict
cycles in !m′". This can be done efficiently (linear in the size of the asymmetric-
conflict relation) with topological sorting. Note that this can be an important
advantage when a prefix is used for checking the coverability of a marking m of
the original net N . It is well-known that m is coverable iff the complete prefix
contains a marking m′ such that (i) µfS(m′) = m and (ii) m′ is coverable. When
a contextual prefix contains one marking m′ with property (i), a non-contextual
prefix of the corresponding PR-encoding may contain a large set of them, one
for each history. An algorithm for coverability that works on contextual prefix
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just needs to consider m′ whereas methods using non-contextual prefixes have
the burden of dealing with the whole set.

5 Conclusions

We have presented an approach for computing finite complete prefixes of gen-
eral contextual nets, which extends the approach proposed for the class of read-
persistent nets in [19] and provides an alternative to the technique based on
the PR-encoding of contextual nets as ordinary nets. Our work relies on the
idea of dealing explicitly with the multiple histories that events can have in con-
textual net computations, due to the presence of asymmetric conflicts. Subsets
of “useful” histories for events are recorded in the prefix during the construc-
tion and, correspondingly, a new notion of cut-off is considered. In the case of
read-persistent nets every transition has a single history and hence our approach
coincides with the one introduced in [19].

Our work shares some basic ideas with [20], where however the definition of
cut-off is non-constructive, since it depends on all the possible histories that an
event may have. In order to avoid this problem we introduced the (constructive)
notion of local cut-off. Apart from that, the notion of cut-off in [20] is stronger
than ours, which might lead to larger prefixes.

As witnessed by some examples in the paper, the complete prefix of a contex-
tual net can be significantly smaller than that of an equivalent net where read
arcs are replaced by consume/produce loops. The ability to generate smaller
unfoldings comes with a price, i.e., during the construction of the prefix we have
to record and evaluate additional information such as histories and asymmetric
conflict. Still, we conjecture that the algorithm will never require more space
or time than the ordinary algorithm applied to the PR-encoding of the net.
More precisely, for safe nets, as discussed in Sect. 4, the histories in the prefix
should correspond exactly to the events in the unfolding of the PR-encoding, and
causality and conflict on histories should be the exact match to causality and
conflict for transitions. Furthermore, we expect our technique to be strictly more
efficient for non-safe nets as indicated by the example in the previous section.

From a more methodological perspective, let us stress that our approach can
build a complete finite prefix for a large class of c-nets directly, without the
need of resorting to an encoding. We think that this feature makes our approach
more suitable than others to be extended to other classes of systems exhibiting
concurrent read-only accesses, for which an encoding could either not be feasible
or could cause a significant loss of concurrency.

In particular, we are interested in graph transformation systems (GTSs), a
quite expressive formalism where reading and preserving part of the system state,
in this case a graph, is an integral part of the model. We believe that our direct
approach will be useful to generalise McMillan’s approach to the full class of
GTSs, while currently only its read-persistent subclass is dealt with in [2]. We
are also interested in nets with inhibitor arcs. In this case, an encoding as c-nets
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would be feasible but it would cause (at least in the non-safe case) a loss of
concurrency, and thus a direct approach could be preferable.

We plan to implement and test the algorithm for contextual nets in the frame-
work of the Mole unfolder [1] that currently deals with ordinary nets. At present,
with the limited goal of analyzing the size of the produced prefix, we implemented
a prototype which given a safe c-net, converts the read arcs into consume/produce
loops, builds its finite prefix, and then merges the occurrences of the same context
places. A complete implementation of our algorithm is currently in progress. We
expect that in order to obtain satisfactory experimental results about the com-
plexity (in time and in space) of our algorithm, in comparison with others, first
we will need to be able to deal with more refined notions of cut-offs based on ad-
equate orders [7], and second we will have to design and implement efficient data
structures for recording the sets of histories of an event during the construction of
the prefix.

Acknowledgments. We are grateful to the anonymous referees for their insightful
comments and suggestions on the submitted version of this paper.
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Abstract. Digital electronic systems typically use synchronous clocks and pri-
marily assume fixed duration of their operations to simplify the design process.
Time elastic systems can be constructed either by replacing the clock with com-
munication handshakes (asynchronous version) or by augmenting the clock with
a synchronous version of a handshake (synchronous version). Time elastic sys-
tems can tolerate static and dynamic changes in delays (asynchronous case) or la-
tencies (synchronous case) of operations that can be used for modularity, ease of
reuse and better power-delay trade-off. This paper describes methods for the mod-
eling, performance analysis and optimization of elastic systems using Marked
Graphs and their extensions capable of describing behavior with early evaluation.
The paper uses synchronous elastic systems (aka latency-tolerant systems) for
illustrating the use of Petri nets, however, most of the methods can be applied
without changes (except changing the delay model associated with events of the
system) to asynchronous elastic systems.

1 Introduction

Synchronous systems dominate digital design practices in the areas of electronic system
design and embedded systems. Such systems assume the presence of a global time ref-
erence — global clock — which significantly simplifies design tasks and enable usage
of zero delay abstraction for computation and communication delays. When designing
or analyzing a digital synchronous circuit, one implicitly assumes the existence of a
master clock that determines the frequency at which computations are performed and
input/output data are transferred.

The specification of synchronous systems typically rely on precise knowledge on la-
tencies (i.e., delays as measured in number of clock cycles) of different computations.
Such knowledge, that is typically required from early stages in design specifications,
may make the design process highly inflexible to possible changes in communication
and computation latencies or delays. In addition, it restricts the usage of adaptive, vari-
able delay or latencies of components since static scheduling of such components is a
much harder (or impossible) job and typically complicates the system description.

In contrast, these assumptions do not apply to software programs or distributed com-
munication over Internet, for which one assumes that the response time will depend on
a variety of factors beyond the control of the user: the current workload of the operating
system, the cache hit ratio, the traffic on the network, etc.

K. Jensen, W. van der Aalst, and J. Billington (Eds.): ToPNoC I, LNCS 5100, pp. 221–249, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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One could say that software programs and Internet communication are elastic, since
they can adapt themselves to the specific characteristics of the resources required to
execute them and to the environment that interacts with them.

With current and future nanotechnologies, circuits resemble more a distributed net-
work of devices with variable computation and communication delays. For example, a
factor like the temperature of a specific region of a chip may change the frequency of a
local clock and the response time of a particular functional unit. However, conventional
circuits are often not designed in a way that allows changing the timing behavior of
some components arbitrarily without modifying the functional behavior of the system.

For several decades researchers have studied systems that are tolerant to the variabil-
ity of different parameters of a circuit: delay, power supply, temperature. One line of
research (that was used in many industrial designs) adopts frequency of the clock and
voltage levels to changing operational parameters. The other natural way of improving
the tolerance to variability in delays is to eliminate the clock from the system, making
the entire system asynchronous.

1.1 Two Forms of Elastic Systems

Like a distributed network, the components of an asynchronous circuit talk to each other
by means of handshake signals that commit to some protocol. Typically, there is a local
bi-directional synchronization for each pair of components that must exchange data. In
its minimal form, the synchronization is implemented by a pair of signals called request
and acknowledge.

The term “elastic circuit” initially referred to pipelines that were tolerant to the vari-
ability of input data arrival and computation delays. For example, Sutherland [1] used
the term elasticity in his Turing award lecture on micropipelines.

Asynchronous systems [2–5] imply additional design complexity, since they often
encode information in signal transitions. Therefore, the asynchronous circuit must not
produce glitches or other transient signal transitions that could result in misinterpreta-
tions of the information. It is important to entirely avoid spurious transitions (also called
glitches or hazards) or to restrict glitches to the timing intervals during which the signal
is not observed. Both constraints make the design of asynchronous circuits considerably
more challenging than the synchronous one.

For this reason, several research efforts limit the elasticity of asynchronous systems
to discrete multiples of a certain time interval, e.g. the period of a synchronous clock.
Since the mid-1990’s, this idea has evolved and reappeared in different forms under
several names, such as synchronous emulation of asynchronous circuits [6], synchro-
nous handshake circuits [7], latency-insensitive design [8, 9] or synchronous elastic
systems [10–12]. In all these variants, the systems can tolerate changes to latencies
of components, but events are synchronized to a common clock.

A synchronous elastic system resembles a conventional clock circuit, but every data
item in it has an associated valid bit. Every functional unit can also issue a stop bit to
stall the activity of the neighboring units when it is not ready to receive information.
These bits implements a synchronous version of the handshake protocol optimized in
comparison with an asynchronous request/acknowledge protocol thanks to the presence
of the clock reference.
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By incorporating synchronicity, the design of elastic systems becomes easier. As in
regular synchronous circuits, signals must stabilize only by the end of the clock period
and are allowed to have glitches. Therefore, the existing infrastructure and methods for
synchronous design can be re-used for synchronous elastic circuits.

Elastic circuits pose new opportunities and challenges in the design of future digi-
tal systems. Their tolerance to variable latency motivates the design of functional units
optimized for the most frequent cases (instead of the worst case), offering a better av-
erage delay and new design trade-offs. They enable dynamic changes in latencies (in
a synchronous case) or delays (in the asynchronous case) and dynamic adaptation to
different environmental scenarios (temperature, power supply, clock frequency, etc.).
Layout synthesis can benefit from elasticity, since elasticity can be introduced into lay-
out with few incremental changes enabling fine-tuning of the system for better power
and performance. Elasticity introduces a certain degree of dynamic scheduling into sys-
tem behavior making the optimal scheduling a more challenging problem. It also allows
for new dimensions in high-level optimization and transformations.

1.2 Use of Petri Nets for Modeling Elastic Systems

It was discovered during the MIT MAC project [13–15] that Petri nets, with their ca-
pabilities for describing distributed asynchronous computations as collection of asyn-
chronous concurrent behaviors, is a natural way of specifying asynchronous pipelined
systems. Such description can then be used for performance analysis, synthesis, vali-
dation and other forms of formal reasoning. This line of research was further explored
later by multiple research groups.

In this paper, we will illustrate how Petri nets can be used for modeling synchronous
elastic systems (ES). The reader should keep in mind that we have chosen the synchro-
nous version primarily for illustrative purpose and that methods for modeling of elastic
systems with marked graphs (Sect. 3.1), for slack matching and buffer sizing (Sect. 4),
and for performance modeling of systems with early evaluation (Sect. 6) can be applied
equally well to the asynchronous implementation. The only adjustment that would be
then required is to change the delay annotation of the Petri Nets events with other forms
of delays (e.g. with real delay numbers to model continuous time domain instead of
integers used for discrete time domain in synchronous systems). Methods for control
optimization (Sect. 5) and for retiming and recycling (Sect. 7) rely on the synchronous
nature of the systems.

Petri nets have been extensively used in asynchronous circuit design. In [16, 17],
marked graphs are the underlying formalism to model the flow of data in asynchronous
circuits. Signal transition graphs [18, 19] have also been used to specify asynchronous
controllers. Several examples and areas illustrating synergies between hardware and
Petri nets can be found in [20].

In this paper, we focus exclusively on the use of Marked Graphs and their new
extension for modeling systems with early evaluation. This is because synchronous
elastic systems can be adequately modeled with this sub-classes of Petri nets that
is much easier to analyze and use for formal reasoning. When analyzing the perfor-
mance, we will often assume that these systems are composed of equally-timed units
(e.g. 1-cycle delays). This assumption is not a limitation, but just a simplification to
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improve the readability of the paper. The reader will soon realize that many of the
methods discussed in the paper can be easily extended to units with different delays.

Most of the strategies use either linear or mixed-integer linear programming (MILP)
to solve the stated problems. Linear programming (LP) problems can be solved in poly-
nomial time [21], while mixed-integer linear programming problems are NP-complete
problems for which several reliable solvers exist [22].

2 Elastic Systems

2.1 Introduction

Synchronous circuits are often modeled, at a certain level of abstraction, as machines
that read inputs and write outputs at every cycle. The outputs at cycle i are produced
according to a calculation that depends on the inputs at cycles 0, . . . , i. Computations
and data transfers are assumed to take zero delay.

Latency-insensitive design [8] aims at relaxing this model by elasticizing the time
dimension and decoupling the cycles from the calculations of the circuit. It enables
the design of circuits tolerant to any discrete variation (in the number of cycles) of
the computation and communication delays. With this modular approach, the function-
ality of the system only depends on the functionality of its components and not on
their timing characteristics. The motivation for latency-insensitive design comes from
the difficulties with timing and communication in nanoscale technologies. The number
of cycles required to transmit data from a sender to a receiver is determined by the
distance between them, and often cannot be accurately known until the chip layout is
generated late in the design process. Traditional design approaches require fixing the
communication latencies up front, and these are difficult to amend when layout infor-
mation finally becomes available. Elastic circuits offer a solution to this problem. In
addition, their modularity promises novel methods for microarchitectural design that
can use variable-latency components and tolerate static and dynamic changes in com-
munication latencies, while — unlike asynchronous circuits – still employing standard
synchronous design tools and methods.

Figure 1a depicts the timing behavior of a conventional synchronous adder that reads
input and produces output data at every cycle (boxes represent cycles). In this adder, the
ith output value is produced at the ith cycle. Figure 1b depicts a related behavior of an
elastic adder—a synchronous circuit too — in which data transfer occurs in some cycles
and not in others. We refer to the transferred data items simply as data and we say that
idle cycles contain bubbles.

Elasticization decouples cycle count from data count. In a conventional synchronous
circuit, the ith data of a wire is transmitted at the ith cycle, whereas in a synchronous
elastic circuit the ith data is transmitted at some cycle k ≥ i.

Turning a conventional synchronous adder into a synchronous elastic adder requires
a communication discipline that differentiates idle from non-idle cycles (bubbles from
data). This communication is usually supported by a pair of wires that synchronizes the
sender and the receiver.

In asynchronous circuits, synchronization is typically implemented by two wires
called request (from sender to receiver) and acknowledge (from receiver to sender).
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Fig. 1. a Conventional synchronous adder, b Synchronous elastic adder

In synchronous circuits, different nomenclatures have been used. In this paper we will
call valid the wire from sender to receiver that indicates the validity of the data. We
will also call stop the wire from receiver to sender that, when asserted, indicates that
the receiver has not been able to accept data.

Different synchronization protocols for elasticity can be defined. In this paper we
will focus on a specific one called Synchronous Elastic Flow (SELF) [11]. This pro-
tocol has been inspired on the theory of latency-insensitive design [8] and in some
implementations of synchronous elastic pipelines [10].

In SELF, every input or output wire X in a synchronous component is associated to
a channel in the elastic version of the same component. The channel is a triple of wires
< X ,validX ,stopX >, with X carrying the data and the other two wires implementing
the control bits, as shown in Fig. 2b. Data is transferred on this channel when validX = 1
and stopX = 0: the sender sends valid data and the receiver is ready to accept it.

Since elastic networks tolerate any variability in the latency of the components,
empty FIFO buffers can be inserted in any channel, as shown in Fig. 2b, without chang-
ing the functional behavior of the network.
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Fig. 2. a Synchronous network, b its elastic counterpart

2.2 Architectural View of Elastic Circuits

The FIFO buffers referred in the previous section will be called Elastic Buffers (EB).
In elastic systems, the capacity of EBs has a direct impact on the performance. For an
implementation of elasticity based on distributed control between neighboring blocks,
EBs must have a capacity greater than 1 slot to avoid a degradation in performance. In
particular for one-cycle propagation latency in the forward and backward directions, it
has been proved that EBs with a capacity of two slots can guarantee the same perfor-
mance as a non-elastic system [8].



226 J. Cortadella et al.

...........
..........
..........

............ .............. ................ ................ .............. ............ ..........
..........
.........
..
.........
..

........................................................................................................
..........

..........
...........

...........
..........
..........

............ .............. ................ ................ .............. ............ ..........
..........
.........
..
.........
..

........................................................................................................
..........

..........
...........

...........
..........
..........

............ .............. ................ ................ .............. ............ ..........
..........
.........
..
.........
..

........................................................................................................
..........

..........
...........

Empty Half Full
. ...........................

.......................... ......................... ........................ ......................... .......................... ........................... . ...........................
.......................... ......................... ........................ ......................... .......................... ...........................

. ........................... .......................... ......................... ........................ ......................... ..........................
........................... . ........................... .......................... ......................... ........................ ......................... ..........................

............................................................................
..........
...........
............

............
...........
..........

.......... ........ ........ .......... ............

. ............ .......... ........ ........ ..........
..........
...........
............

............
...........

..........
.................................................

..............
............
.........
........
.........
......... ........... ............. ............. ........... ......... ......... ........

.........
...........
.

...........
...

.
...........
...

...........
.

................. ......... ......... ........... ............. ............. ........... .........
.........
........
.........

............
..............

� �

� �

� ��

�
Vr VrSl

V l Sr

Vl/EmEs VlSr/Em

V lSr Sr/Es

V lSr

VlSr/EmEs

L H

L

Dl

Vl
S l S r

Vr

Dr

Em Es

Control

Fig. 3. Specification of the latch-based EB

There are different ways of implementing EBs. In [11], a latch-based implementation
of EBs was proposed, in which each FIFO with capacity two was implemented with a
pair of Elastic Half-Buffers (EHB). An EHB consists of a transparent latch and an
associated handshake controller. An EB is composed of two EHBs in a similar way
as flip–flops are implemented as a pair of transparent latches with opposite polarity
(master and slave).

Figure 3 depicts the FSM specifications this scheme, where V and S represent the
valid and stop signals of the handshakes and E represents the enable signal of the latch
(transparent when high). The latches are labeled with the phase of the clock, L (ac-
tive low) or H (active high). To simplify the drawing the clock lines are not shown.
The enable signals must be AND-ed with the corresponding clock phase for a proper
operation.

An enable signal for transparent latches must be emitted on the opposite phase and
be stable during the active phase of the latch. Thus, the Es signal for the slave latch is
emitted on the L phase.

The FSM specification of Fig. 3 is similar to the specification of a two-slot FIFO:
in the Empty state no valid data is captured in the data-path, in the Half-full state, an
output slave latch keeps valid data, in the Full state — both latches keep valid data and
the EB requests the sender to stop.

Let us show an architectural example of an elastic communication, with the circuit
of Fig. 4. It represents part of a circuit where a sender provides data to a receiver. It is
assumed a long distance between them, so EBs are inserted accordingly as shown in the
figure. To make the example more general, data is processed between the latches (boxes
named CL). White boxes represent the control part for each one of the EHBs. The
example contains consecutive snapshots (left to right, top to bottom) of the consecutive
states of the elastic circuit when the communication is taking place.

The situation initially is the following (top-left configuration in the figure): all but
the second latch hold valid data, shown by the circles inside them. The valid bits are
1 in all the stages. The receiver is blocked, hence it has set the stop bit to 1, which
has propagated two stages further towards the sender. The sender is not aware yet of
the blocking of the receiver, due to the incoming stop bit with value 0. The next phase
of the clock is H, so the next configuration contains the transmission into the second
latch (labeled with H) of the data from the first L latch. Additionally, the stop bit has
traveled one stage further towards the sender. The next phase of the clock (low) allows
the sender to store data in the first L latch, and the stop bit has reached the sender. Stop
bits are also known as back-pressure. After this phase, the whole channel is blocked
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Fig. 4. Simulation of an elastic circuit

with data not processed by the receiver. New data coming from the sender must wait an
arbitrary amount of time until the receiver is able to process the data on this channel.
The forthcoming configurations in the figure (from the fourth to the eighth) show how
the channel becomes available again when the receiver starts processing data from the
full channel. Along consecutive stages, the unset stop bit travels towards the sender and
the latches become enabled again.

3 Marked Graph Models for Synchronous Elasticity

This section presents the class of timed marked graphs that is used for modeling elastic
systems. Although the paper is self-contained the reader can be referred to [23] for a
survey on Petri nets.
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3.1 Marked Graphs

Definition 1. A marked graph (MG) is a tuple G = (T,A,M0), where T is a set of tran-
sitions (also called nodes), A ⊆ T × T is a set of directed arcs, and M0 : A→ N is a
marking that assigns an initial number of tokens to each arc.

Without loss of generality, we model elastic systems with strongly connected MGs. For
open systems interacting with an environment, it is possible to incorporate an abstrac-
tion of the environment into the model by a transition that connects the outputs with the
inputs.

Given a transition t ∈ T , •t and t• denote the set of incoming and outgoing arcs of t,
respectively. Given an arc a ∈ A, •a and a• refer to the source and target transition of a
respectively. Let C be the n×m incidence matrix of the MG with rows corresponding
to the n arcs and columns to the m transitions:

Ci j =

⎧⎨⎩
−1 if t j ∈ a•i \ •ai

+1 if t j ∈ •ai \ a•i
0 otherwise

A transition t is enabled at a marking M if M(a) > 0 for every a ∈ •t. Any enabled
transition t can fire. The firing of t removes one token from each input arc of t, and adds
one token to each output arc of t.

Definition 2 (Reachability). A marking M is said to be reachable from M0 if there is a
sequence of transitions that can fire starting from M0 and leading to M.

Definition 3 (Liveness). An MG is said to be live if every node can eventually fire from
any reachable marking.

For the sake of notation, the total number of tokens in a subset φ ⊆ A at a given mark-
ing M is denoted by M(φ) = ∑

a∈φ
M(a). Some useful properties of strongly connected

MGs [23] are:

Property 1 (Liveness). An MG is live iff every cycle c is marked positively at M0, i.e.,
M0(c) > 0.

All the MGs considered throughout this paper are assumed to be live.

Property 2 (State equation and reachability). A marking M ≥ 0 is reachable from
the initial marking M0 iff the state equation

M = M0 +C ·σ , σ≥ 0 (1)

is satisfied for some firing count vector σ (the j’s component of σ corresponds to the
number of times transition t j has fired).

Property 3 (Cycles and reachability). A marking M is reachable iff M(c) = M0(c) for
every cycle c of the MG.



Elasticity and Petri Nets 229

3.2 Timed Marked Graphs

Definition 4. A timed marked graph (TMG) is a tuple G = (T,A,M0,δ), where
(T,A,M0) is a MG, and δ : T → R+∪{0} assigns a non-negative delay to every tran-
sition.

In a TMG, a transition t fires δ(t) time units after becoming enabled. In order to cor-
rectly model the time behavior of the circuits, single server semantics is adopted, i.e.,
no multiple instances of the same transition can fire simultaneously. Notice that single
server semantics is a particular case of infinite server semantics: the addition of a self-
loop place with one token, i.e., a place p such that p• = •p and M0(p) = 1, around each
transition guarantees single server semantics [24].

The average marking of an arc a, denoted as M(a), represents the average occupancy
of the arc in steady state. Formally the average marking vector for all arcs is defined as:

M = lim
τ→∞

1
τ

� τ

0
Mϕdϕ

where Mϕ is the marking at time ϕ.

Performance Evaluation. We will measure the performance of a TMG as the through-
put of its transitions. The throughput of a transition t, Θ(t), is the average number of
times t fires per time unit, or cycle time, in the infinitely long execution of the system.
Given that we are considering strongly connected TMGs, in the steady state all transi-
tions have exactly the same throughput, Θ. We will describe two well-known methods
to compute the throughput of a TMG.

Method 1. Each pair {a,a•} of the TMG can be seen as a simple queuing system for
which Little’s formula [25] can be directly applied. Hence,

M(a) = R(a) ·Θ (2)

where R(a) is the average residence time at arc a, i.e., the average time spent by a token
on the arc a [24]. The average residence time is the sum of the average waiting time due
to a possible synchronization, and the average service time which in the case of TMGs
is δ(a•). Therefore, the service time δ(a•) is a lower bound for the average residence
time. This leads to the inequality:

M(a)≥ δ(a•) ·Θ for every arc a (3)

The following LP Problem includes the constraint (3) for each arc, and the reacha-
bility condition for a estimated average marking M̂:

Maximize Θ :

δ(a•) ·Θ≤ M̂(a) for every a ∈ A

M̂ = M0 +C ·σ

Θ≤min
t∈T

1
δ(t)

(4)
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The last constraint Θ ≤ min
t∈T

1/δ(t) ensures single server semantics. Such constraint

can be dropped if a self-loop arc with one token is introduced around each transition.
The solution of LP (4) is the exact throughput of the TMG [24].

Method 2. If C is the set of simple directed cycles in an TMG, its throughput can be
determined as [26]:

Θ = min

{
min
c∈C

M0(c)
∑

t∈c
δ(t)

, min
t∈T

1
δ(t)

}
(5)

As in (4), the term min
t∈T

1/δ(t) enforces single server semantics. Many efficient algo-

rithms for computing the throughput of an TMG exist that do not require an exhaustive
enumeration of all cycles [27,28]. In practice, method 2 usually computes the through-
put more efficiently than method 1.

Definition 5 (Critical cycle and arc). A cycle c satisfying the equality (5) is called
critical. An arc is called critical if it belongs to a critical cycle.

3.3 Elastic Marked Graphs

Definition 6. An elastic marked graph (EMG) is a tuple G = (T, A, M0,δ,L), where
(T, A, M0,δ) is a TMG and:

– δ : T → N+ assigns a positive integer delay to every transition.
– For every arc a∈ A there exists a complementary arc a′ ∈ A satisfying the condition
•a = a′• and •a′ = a•. A labeling function L maps all arcs of an EMG as forward
or backward L : A→{F,B} such that L(a) = F iff L(a′) = B.

The delay δ(t) of a given transition t represents the number of time cycles required
by t to perform its computation. Thus, the class of EMGs can model adequately syn-
chronous elastic systems. Typically, in the initial state of an elastic system there is at
most one token on a forward arc.

Figure 5 shows an example of EMG. Given that in an EMG every arc a has a comple-
mentary arc a′, for every pair {a,a′}, the equality M(a)+ M(a′) = M0(a)+ M0(a′) = k
is satisfied, where k is the capacity of the buffer {a,a′}. Semantically, the pair {a,a′}
represents the state of an EB. Assume that L(a) = F and L(a′) = B. We say that the

a

f g h

dcb

e

Fig. 5. An example of an elastic marked graph
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EB is full when M(a) = k, M(a′) = 0; when M(a) = 0, M(a′) = k we say that there
is a bubble in the system. For instance, the EB represented by the arc pair {b,c} in
Fig. 5 is a bubble. M(a) represents the number of information items inside the buffer,
while M(a′) represents available free space in the state of the system that corresponds
to the marking M. M0(a), and M0(a′) represents the corresponding values at the time of
system initialization after the reset.

4 Slack Matching

The performance of an elastic system may degrade because of unbalanced pipelines.
This is a well-known problem in asynchronous design. In order to balance the pipelines
and improve the performance empty buffers must be added [29–31]. This strategy is
known as slack matching.

In this section, we present two transformations for slack matching of ES: buffer siz-
ing and recycling. The main optimization considered here is buffer sizing, that consists
on variations of the capacity of the EBs. At the end of the section, we will show that
the insertion of bubbles (recycling) also may increase the throughput.

4.1 An Introductory Example

When tokens arrive at the input arcs of a join transition at different times, the early
token will stall. The stalled event may generate further stalled events, i.e., it propagates
backwards, which may degrade system performance. A very nice explanation of the
nature of this phenomenon as well as the exact MILP for slack matching asynchronous
design can be found in [31].

Here we try to give an intuitive understanding of the slack matching problem. For this
purpose let us simulate the simple EMG depicted in Fig. 6. The EMG has the so called
unbalanced fork–join structure. The fork transition is a, the join is c. The short branch
is {a,c} and the long one is {a,b,c}. All transitions have unit delay. The join transition
c is not enabled at time stamp 0. This causes to stall the token on the arc {a,c} by one
time unit. The rest of the transitions are enabled and will fire. The resulting marking
is shown at the configuration in time stamp 1. Now the EB that corresponds to the arc

Stalled by 1Stalled by 1

Stalled by 1

Stalled by 1

b

d

a c

b

d

a c

b

d

a c

b

d

a c

Time stamp 0 Time stamp 1 Time stamp 2 Time stamp 3

Fig. 6. A stall event backward propagation causes a throughput degradation
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{a,c} is full and cannot receive new data. Thus, in time stamp 1 transitions a and d are
not enabled. This makes the token on the arc {d,a} stall by one time unit. At time stamp
2 all transitions are enabled but b. At time stamp 3, the EMG is in the initial state. Each
transition has fired twice during three time stamps. Hence, the throughput of the EMG
is equal to 2/3. The critical cycle is {a,b,c}. It has two tokens and three arcs.

The EMG model allows us to identify when to balance the corresponding ES in
order to avoid throughput degradation:

The backward propagation of stalled events leads to the ES throughput degradation
iff there are backward arcs on all critical cycles of the corresponding EMG. In the
provided example the critical cycle {a,b,c} contains the backward arc {c,a}.

Buffer sizing and recycling transformations aim to make the throughput independent
of backward edges. Hence, the maximum throughput that can be achieved by buffer
sizing in a EMG is equal to the throughput of the “forward” TMG that is obtained by
removing all backward arcs from the initial EMG.

4.2 MILP for Buffer Sizing

Buffer sizing adds tokens to backward arcs, i.e., it increases the capacities of the corre-
sponding EBs.

For example, to remove the backward arc {c,a} from the critical cycle in Fig. 6 it
is enough to increase the capacity of the corresponding EB by one. Figure 7b shows
the resulting EMG. The throughput is now equal to 3/4. The critical cycle {a,b,c,d}
contains only forward arcs. Tokens in the arc {d,a} never stall.

(b) (c)(a)

b b

a ac ca

d

r c

dd

b

Fig. 7. a EMG from the Figure 6, b Buffer sizing, c Recycling

The maximum throughput can always be achieved by some proper buffer sizing,
however to find a sizing with minimal storage elements overhead is an NP-complete
problem [32]; this can be also shown by reducing the feedback arc set problem [33] to
minimal buffer sizing.

Let us assume that the throughput of the “forward” TMG is known (it can be com-
puted efficiently with the techniques presented in Sect. 3.2). Using an estimation of the
average marking of the TMG, that was introduced in Sect. 3.2, one can encode the prob-
lem of buffer sizing with minimal storage elements overhead as the following MILP:
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Minimize ∑
a∈A

∆M0(a) :

M̂ = M0 + ∆M0 +C ·σ,

M̂(a)≥ δ(a•) ·Θ for every a ∈ A,

∆M0 ∈ N|A|.

(6)

Here Θ is throughput of the corresponding “forward” TMG. For each backward arc a,
∆M0(a) contains the number of tokens that need to be added to a in order to reach the
throughput Θ. The number M0(a)+ ∆M0(a) represents the new marking of a. If a is a
forward arc, then ∆M0(a) = 0 in the solution of (6). In [34], a similar MILP for minimal
buffer sizing is presented, which is not based on the MGs theory.

The main disadvantage of buffer sizing is that it increases the complexity and con-
sequently, the area and the combinational delay of the control logic of the ES are in-
creased [35, 36].

4.3 Recycling for Slack Matching

In some situations, the throughput of an ES may be improved by inserting bubbles.
Bubble insertion transformation is called recycling.

Figure 7c shows how the throughput of the EMG depicted in Fig. 6 can be increased
by inserting the bubble {a, r} between transitions a and c. The throughput of the result-
ing EMG is equal to 3/4, with critical cycles {a, b, c, d} and {a, r, c, d}.

(a) (b)(b)

eee

d

cb

a

b c

r da

b

d

c

a

Fig. 8. Buffer sizing vs recycling

The main advantage of recycling with respect to buffer sizing is that no extra com-
binational logic in the control path is required. A weakness is that it may increase the
response time of the system. Another drawback is that recycling may not achieve the
maximum throughput improvement achieved by buffer sizing. An EMG where this hap-
pens is depicted in Fig. 8a. Assuming unit delays, the throughput in Fig. 8a is equal to
3/4, with the critical cycle {a,b,c,d}. The maximum throughput is given by the “for-
ward” cycle {a,b,c,d,e}, and it is equal to 4/5. Applying buffer sizing, this throughput
can be achieved by increasing the capacity of the buffer {a,d}, as shown in Fig. 8b.
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From the EMG in Fig. 8a, let us try to achieve the same throughput improvement
with recycling. Arc {d,a} is the only backward arc in the critical cycle. Hence, channel
{a,d} is the only place where we can insert a bubble to balance the unbalanced fork–
join a−d. The resulting EMG is depicted in Fig. 8c. It still has throughput 3/4, due to
the new critical cycle {a,r,d,e}.

In general, the insertion of bubbles in a critical cycle adds a zero-marked arc which
may preclude to reach the maximum throughput.

In summary, buffer sizing and recycling are two optimization strategies that can be
combined to improve the performance of an ES by removing stall event backward prop-
agation. Depending on the structure of the circuit, buffer sizing can sometimes derive
better results, but has a control overhead. For large circuits or circuits containing a reg-
ular structure, both transformations will likely lead to the same result.

5 Control Optimization

The main cost of elastizising a synchronous circuit is a control overhead. This section
introduces a control simplification technique that reduces this overhead considerably
while preserving the performance of the system. For simplicity, in this section we focus
on synchronous elastic systems where all transitions have the same delay: δ(ti) = δ(t j)
for every ti,t j ∈ T . However, the reader will soon realize that the methods presented in
this section can be easily extended to transitions with different delays.

5.1 An Introductory Example

The implementation of an elastic system maps an EMG to an asynchronous or a syn-
chronous control circuit. For instance, Fig. 9a depicts the elastic circuit corresponding
to part (events a, b and f ) of the EMG drawn in Fig. 10a. The complexity of the circuit
is typically linear in the size of the EMG (e.g. [11]). Therefore, reducing the size of an
EMG contributes directly to the size reduction of the control circuit. Based on this fact,
we focus on reducing the number of arcs in an EMG modeling an elastic system as this
reduces the number of EBs and the number of channels in the fork and join controllers
(that corresponds to transitions with multiple fan-out and fan-in, respectively).

For example, Fig. 9b corresponds to the sharing of transitions b and f from the
EMG of Fig. 10 into a single transition. As a result of this sharing the implementation
is simplified by removing one controller, one channel (a pair of handshake wires), and
one EB, F3, in the data-path that is shared with F2.

The goal of this section is to identify a class of transformations that reduce the num-
ber of controllers while preserving the performance of the system. In particular, the
firing of some transitions can be deliberately postponed in order to be synchronized to
other transitions, allowing the sharing of their controllers without degrading the perfor-
mance of the system.

As described in Sect. 3.2, the performance of an EMG can be measured by its
throughput that is defined as the minimal ratio of the number of tokens to the delay
across all simple cycles and can be efficiently computed [37]. Assuming that the de-
lays of all transitions in Fig. 10a are equal to 1, the critical cycle is {a,b,c,d,e} with
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Fig. 9. Sharing a controller and an elastic FIFO
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Fig. 10. An example of a elastic marked graph a, merging b and f b, and c and g c

a throughput 2/5 (two tokens on the arcs of the cycle; delay of the cycle is five units).
Since the initial marking of the arcs between a and b, and the arcs between a and f is the
same, it is possible to merge transitions b and f (as shown in Fig. 10b) without affect-
ing correctness of computation. The throughput of the system is the same 2/5 and so is
the critical cycle {a,{b, f},c,d,e}. Fig. 9b shows the corresponding implementation,
simplified according to the merging of b and f .

Focusing on the new fork transition {b, f} we again determine that the initial mark-
ing of arc pairs between {b, f} and its successors c and g is the same and therefore it is
possible to merge transitions c and g (as shown in Fig. 10c). However, the throughput
of the system is degraded to 1/3, with a new critical cycle {{c,g},d,h}.

5.2 A Sufficient Condition to Compute Mergeable Transitions

In the example above, the initial marking is used to decide whether two transitions can
be merged: when the arcs from an adjacent fork transition have the same initial marking,
then the transitions can be merged. The remainder of this section will present a strategy
that uses a different marking (called tight) to compute mergeable transitions. A tight
marking can be considered a variation of the average marking. It better exploits the
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Fig. 11. An EMG illustrating a tight marking

flexibility of the system, in order to make the markings on the arcs as much as possible
equal to maximize the sharing of controllers.

Formally, those pair of transitions that can be merged without degrading the perfor-
mance of the system are defined:

Definition 7. Transitions ti and t j are said to be mergeable if an EMG G < ti,t j >
obtained by merging transitions ti and t j in an EMG G has the same throughput as G.

The formal definition of tight marking is the following:

Definition 8. A marking M̃ is called a tight marking of an EMG if it satisfies:

M̃ = M0 +C ·σ (7)

∀ a : M̃(a)≥ δ(a•) ·Θ (8)

∀ t ∃ a ∈ •t : M̃(a) = δ(a•) ·Θ (9)

where M̃ ∈ R|A|, σ ∈ R|T |, and Θ is the throughput of the EMG. An arc a satisfying
condition M̃(a) = δ(a•) ·Θ is called tight.

Therefore a tight marking satisfies the state equation (condition (7)) and no arc has
marking less than δ(a•) ·Θ (condition (8)). These two conditions are also satisfied by
the average marking, and their relation with the system throughput has been described
in Sect. 3.2. Additionally, the tight marking requires that every transition must have at
least one tight incoming arc.

Let us consider the EMG in Fig. 11. It has a single critical cycle {a,b,c,d,e, f}
with a throughput 0.5. Each arc in Fig. 11 is labeled with one number if its average
and tight markings coincide. When they are different the average marking is listed first
and the tight marking is shown in square brackets. If the initial marking or the average
marking are used, the only mergeable transitions are g and b (g and b are the only two
transitions connected to the fork transition a such that M(ag) = M(ab)). However, if
the tight marking is used instead, transitions h and c can be additionally merged.

The following theorem formalizes the above concepts on the tight marking [38]:

Theorem 1. Let M̃ be a tight marking of an EMG G. Transitions ti and t j of G are
mergeable if there exist arcs ai ∈ •ti and a j ∈ •t j such that:

– L(ai) = L(a j),
– M̃(ai) = M̃(a j) = δ(a•i ) ·Θ,
– (•ai = •a j) or (•ai and •a j are mergeable).
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The first two conditions of Theorem 1 narrow the search space to tight arcs with the
same label (forward or backward). The third condition defines iterative merging. These
three conditions ensure the existence of an initialization, i.e., firing sequence of transi-
tions, that produces a marking M in which M(ai) = M(a j). Such an initialization cor-
responds to changing the initial marking of the EMG and can be acceptable in many,
but not all, applications. After such initialization, transitions ti and t j can effectively
be merged. This merging will make arcs ai and a j be identical, since M(ai) = M(a j),
L(ai) = L(a j), •ai = •a j and a•i = a•j , and hence they will be merged into a single arc.

A tight marking can be computed efficiently, as the following proposition states [38]:

Proposition 1. A tight marking of a EMG can be computed by solving the following
LP problem:

Maximize Σσ :

δ(a•) ·Θ≤ M̃(a) for every a ∈ A

M̃ = M0 +C ·σ
σ(ta) = k

(10)

where ta is a transition that belongs to a critical cycle and k is any real number. The
last constraint guarantees the boundedness of the solution. Since the objective function
Σσ is maximized, the obtained M̃ satisfies that for every transition t there exists an arc
a ∈ •t such that δ(t) ·Θ = M̃(a).

The first two constraints of (10) can be transformed into:

δ ·Θ−M0 ≤ C ·σ (11)

Since we are dealing with MGs, each row of the incidence matrix C contains a single
positive (+1) and a single negative (−1) value, while all other values are zeros. There-
fore, Equation (11) is a system of difference constraints and hence the LP (10) can be
efficiently solved by the Bellman–Ford algorithm [39].

The overall strategy for reducing an EMG involves the following steps:

1) Computation of the throughput of the system
2) Computation of a tight marking
3) Determine the sets of mergeable transitions by traversing the tight subgraph
4) Fire transitions to obtain the same marking in the input arcs of the mergeable

transitions
5) Merge mergeable transitions and identical arcs.

6 Early Evaluation

In an early evaluation setting, operations can execute when enough information at the
inputs has been received to determine the value at the outputs. The performance of
elastic systems can be enhanced by using early evaluation. This section proposes an an-
alytical model to estimate the performance of an early evaluated marked graph (see [40]
for a preliminary work).
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6.1 Motivation and Examples

The requirement that all input data must be available to compute a result is too strict
in some cases. For example, if a functional unit computes a = b ∗ c, it is not necessary
to wait for both operands if one of them is already available and known to be zero.
Therefore, the result a = 0 could be produced by an early evaluation of the expression.
Early evaluation has been proposed and used in asynchronous design [41, 42].

Usual Petri nets are not capable of modeling early evaluation, since the enabling
of transitions is based on AND-causality, i.e., all input conditions must be asserted.
Causal Logic Nets from [43] extend Petri nets to allow transition enabling triggered by
arbitrary logic guards associated with transitions. This section presents a new model of
nets, called multi-guarded nets (GN), with the power of modeling early evaluation that
associate with a single transition multiple logic guards selected non-deterministically.
This non-deterministic selection models interaction of the control with conditions in the
data-path.

a b c a b c

(a)

a b a b c
−1

(b)

c

Fig. 12. Multi-guarded transitions: a AND-causality; b early firing with guard {c}

Figure 12a illustrates the usual firing rule in Petri nets (AND-causality). Early eval-
uation is modeled by multi-guarded transitions. A guard is a subset of arcs that can
enable a transition. A multi-guarded transition has a set of guards from which one of
them is chosen nondeterministically at each firing. Assume that the guards of the tran-
sition in Fig. 12b are {{a},{b},{c}}, and {c} is the guard selected for the next firing.
Given that arc c is positively marked, the transition is enabled and will fire. The firing
of an early-enabled transition removes a token from every input arc. If an input arc is
not positively marked, a negative token (−1) is placed in it. This negative token will be
cancelled out when a positive token arrives at the arc.

Example 1. The most relevant example of a unit with early evaluation is the multi-
plexor: the output can be determined as soon as the information of the selected channel
arrives, without waiting for the other channels.

Figure 13 depicts a marked graph with three cycles. The shadowed transitions t1
and t2 model two multiplexors. Their control signals are assumed not to be critical and
are not depicted in the graph. Thus, the two input arcs of the multiplexors model the
two input data. Associated to each input arc there is a guard and a real number in the
interval [0,1] that indicates the probability for the guard to be selected. Each transition
is assumed to have unit delay.
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t 2

α1−α

1−ββ

(1) (2) (3)

t1

α
0.02 0.2 0.4 0.6 0.8 0.98

β

0.02 0.403 0.403 0.403 0.403 0.403 0.403
0.2 0.423 0.423 0.424 0.424 0.425 0.426
0.4 0.429 0.436 0.442 0.447 0.451 0.453
0.6 0.430 0.441 0.454 0.465 0.480 0.487
0.8 0.430 0.443 0.460 0.479 0.507 0.530
0.98 0.430 0.443 0.461 0.488 0.527 0.584

Fig. 13. Throughput of a GN with probabilistic guards

Under a pure Petri net model with AND-causality, the performance of the system
would be determined by the most stringent cycle. The throughput Θi (tokens/transitions)
for each cycle is the following:

Θ1 =
3
7

= 0.429 Θ2 =
3
5

= 0.6 Θ3 =
2
5

= 0.4

Hence, the global throughput of the system would be 2/5. By incorporating early eval-
uation, the throughput can be increased, as shown in the table at the right-hand side of
the figure. When β is close to 0, the system throughput tends to 0.4, i.e., it is almost
completely determined by cycle (3). On the other hand, as α and β approach 1, the
throughput increases and tends to 0.6, i.e., cycle (2) determines the system throughput.
In general, the throughput lies between 0.4 and 0.6 depending on the probabilities at
each multiplexor.

One could think of computing the throughput of the early evaluation system as a
weighted sum of the throughputs of the individual loops, i.e., for the above example such a

sum would be α ·β · 3
5

+(1−α) ·β · 3
7

+ α · (1−β) · 2
5

+(1−α) · (1−β) · 2
5

. Neverthe-

less, this method is incorrect, since loops may affect each other in a complex interplay.

6.2 Approximate Models for Early Evaluation

Definition 9. A timed multi-guarded marked graph (TGMG) is a tuple
N = 〈T,A,M0,δ,H,α〉 where:

– 〈T,A,M0,δ〉 is a timed marked graph TMG working under single server semantics.
– H : T → 22A

assigns a set of guards to every transition, such that the following
condition is satisfied: Every transition t is assigned a set of guards H(t), where
every guard gi ∈H(t) is a subset of the input arcs of t, i.e., gi⊆ •t, and ∪

g∈H(t)
g = •t.

– α is a function that assigns a strictly positive probability to each guard such that
for every guarded transition t: ∑

g∈H(t)
α(g) = 1.

A guard g ∈ H(t) is selected first in the initial marking, M0, and then after each firing
of t. The probability of selecting the guard g ∈ H(t) is α(g). The selected guard of
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Fig. 14. A TGMG and its associated Markov chain

a transition t is persistent, i.e., it never changes between the firings of t. If the guard
g ∈ H(t) has been selected for the next firing of t, then t becomes enabled when every
arc a ∈ g has a token (M(a) > 0). If t is enabled, it fires δ(t) time units after becoming
enabled. As in conventional transitions, the firing of t removes one token from every
input place, and produces one token in every output place. A classical Petri net is simply
a GN in which H(t) = {•t}, for every t ∈ T . Such transitions will be called simple
transitions.

Analysis through Markov Chains. Due to the stochastic nature of selecting guards a
TGMG can be viewed as a semi-Markov process [44]. In such a process, the sojourn
time of a given state is the elapsed time between the arrival time to the state and the
firing time of a transition from such a state.

Figure 14 shows a TGMG (delays of all transitions assumed to be 1) and the asso-
ciated transition graph of the semi-Markov process. Each arc of the graph corresponds
to one time unit. For simplicity, the transitions of the TGMG are named a,b,c,d and arcs
ab,ba,ac,cd,da using pairsofnamesofpreset–postset transitions.Thestatesof thisgraph
S1,S2,S3 are the reachable markings. The matrix-like shape depicted at each state corre-
spond to the marking at each state (see graphical explanation in Fig. 14). Arcs are labeled
with probabilities to be taken (omitted if probability is 1) and a set of firing transitions.

The average time spent at each state (marking) at the steady state can be obtained
by solving the set of linear equations corresponding to the semi-Markov process. Let
Z1,Z2,Z3 be the probabilities to be in the corresponding states S1,S2,S3 in steady state.
One can write a set of equations corresponding to the transitions of the process:

Z2 = Z1

Z3 = (1−α) ·Z2

Z1 + Z2 + Z3 = 1

The solution is:

Z1 = Z2 =
1

3−α
, Z3 =

1−α
3−α
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Transition a is fired with probability 1 from S1 and with probability 1−α from S2.
Therefore, the steady state throughput of transition a is:

Θ(a) = Z1 +(1−α) ·Z2 =
2−α
3−α

As in classical TMGs, the steady state throughput of a TGMG is the same for every
transition [40], i.e., Θ(a) = Θ(b) = Θ(c) = Θ(d).

6.3 Performance Estimation

The use of Markov chains allows one to compute the exact throughput of any bounded
TGMG. However, it requires an exhaustive exploration of the reachability graph that
is exponentially larger than the size of the bounded TGMG. This section presents a
method to obtain an upper throughput bound via LP, i.e., the method has polynomial
complexity.

For the sake of clarity, we will assume that every transition t has singleton guards,
i.e., |g| = 1 for every g ∈ H(t), or is simple, i.e., H(t) = {•t}. The set of transitions
with singleton guards is denoted as T1, and the set of simple transitions is denoted
as T2. Transitions with only one input arc can be included either in T1 or in T2. This
assumption does not involve a loss of generality: a transition with non-singleton guards
can be transformed to a transition with singleton guards with identical behavior [40].

Let t ∈ T2. As explained in Sect. 3.2, Equation (3) is satisfied by each pair {a,t}
where a• = t. In other words, Equation (3) expresses linear relationships between the
throughput of a simple transition and the average marking of its input arcs.

For each transition t ∈ T1, it is also possible to establish a linear relationship between
its throughput and the average marking of its input arcs. Let t ∈ T1 and prob(enab(t))
be the probability of t to be enabled in steady state. In other words, prob(enab(t)) is
the time ratio during which t is enabled. Since transitions have deterministic delays and
operate under the single server semantics, the enabling operational law [45] for t is:

δ(t) ·Θ(t) = prob(enab(t)) for any t ∈ T (12)

After a number of algebraic manipulations, the value prob(enab(t)) can be expressed
in terms of the marking of the input arcs of t. In particular, a useful expression is given
by Theorem 2 [40]:

Theorem 2. Let t be a transition with singleton guards, then:

δ(t) ·Θ(t) = ∑
a∈•t

α({a}) ·
(

M(a)−
∞

∑
i=2

(i−1) · prob(M(a) = i)
)

Corollary 1. Let t be a transition with singleton guards. If the marking of its input arcs
is 1-upperbounded then:

δ(t) ·Θ(t) = ∑
a∈•t

α({a}) ·M(a)

else:
δ(t) ·Θ(t) < ∑

a∈•t
α({a}) ·M(a)
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One can combine the constraints in Corollary 1 for transitions in T1 and the con-
straint (3) for transitions in T2 to build a LP Problem that maximizes a parameter φ,
corresponding to the TGMG throughput. One scalar variable suffices since the through-
put of all transitions is the same. The resulting LP can be expressed as:

Maximize φ :

δ(t) ·φ≤ ∑
a∈•t

α({a}) · M̂(a) for every t ∈ T1

δ(t) ·φ≤ M̂(a) for every a ∈ •T2

M̂ = M0 +C ·σ
φ≤min

t∈T
1/δ(t)

(13)

The vector σ represents the firing count vector that drives the system from the ini-
tial marking, M0, to the estimated average marking M̂. The constraint σ ≥ 0 has been
dropped since for any non-positive σ, a positive σ exists that delivers the same maxi-
mum value of φ (this is due to the fact that C is not a full rank matrix). The last constraint
φ≤mint∈T 1/δ(t) guarantees single server semantics.

The LP (13) always has solution since all its constraints must hold in the steady
state. Given that the throughput variable, φ, is maximized, the obtained value is an
upper throughput bound [40].

Theorem 3. Let N be a TGMG. The solution of (13) gives an upper bound for the
steady state throughput of the TGMG.

Example 2. Consider again the 1-bounded TGMG from Fig. 14 (delays of all transi-
tions assumed to be 1). The associated LP problem is:

Maximize φ:
φ ≤ M(ab) for transition b
φ ≤ M(ac) for transition c
φ ≤ M(cd) for transition d
φ ≤ α ·M(ba)+ (1−α) ·M(da) for transition a

ba = 1 + M(b)−M(a) for arc ba
da = 1 + M(d)−M(a) for arc da
ab = M(a)−M(b) for arc ab
ac = M(a)−M(c) for arc ac
cd = 1 + M(c)−M(d) for arc cd

The solution to this problem is

φ =
2−α
3−α

which, in this case, corresponds exactly to the solution we have obtained with Markov
chain analysis.
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7 Retiming and Recycling

In this section, we will show how a well-known optimization technique (retiming [46])
can be combined with the insertion of empty buffers (recycling) for performance op-
timization. The EMG representation does not capture information about the combina-
tional delay of a node, so in this section our representation of an elastic system is based
on the retiming graph of Leiserson and Saxe [46].

7.1 An Introductory Example

In logic synthesis the usual representation of a synchronous sequential circuit is a set of
combinational blocks interconnected via memory elements (registers). Figure 15a gives
an example of a simple sequential circuit. This circuit has nine simple combinational
blocks, denoted with lower case letters a,b, . . . , i and four registers R1,R2,R3,R4. Every
gate computes some boolean function. The gate a is a usual representation of a NOR-
gate, which implements a boolean function of two variables f (x1,x2) = x1∨ x2. The
delay of the gate is the amount of time required to recompute the output value when
some inputs are changed. A combinational path is a sequence of directly connected
gates, i.e., without registers along the sequence. The sequence c,d,e,a from Fig. 15 is a
combinational path, while the sequence a,b is not. The combinational path delay is the
sum of the delays of its nodes. In order to have a well-defined physical design, combi-
national paths must not form cycles, i.e., each cycle must have at least one register.

Every time that the global clock signal (denoted as CLK on the figure) arrives, the
registers become “transparent”, i.e., the input data becomes output data. For example,
the result computed by gate b during the previous clock cycle becomes the input for
gate c. The amount of time between two consecutive clock signals (a clock period)
should allow each gate to recompute its output value. In order to guarantee a correct
functionality, the maximum combinational path delay of the circuit, which is called
cycle time, should be less than or equal to the clock period.

The retiming technique represents sequential circuits as weighted directed graphs
(retiming graph). The nodes of the graph model gates. Each node is labeled with its
delay. A directed edge of the graph models an interconnection between gates, and is
weighted with a register count. The register count is the number of registers along the
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Fig. 15. a A synchronous sequential circuit, b its retiming graph
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Fig. 16. a Retiming graph, b Min-delay retiming configuration, c Retiming and recycling

connection. Fig. 15b shows the corresponding retiming graph for the sequential circuit
depicted on the Fig. 15a. The nodes (circles) are labeled with their delays. The edges
are labeled with the corresponding register number, unlabeled edges have no registers.
The delay of the combinational path c, f ,g is equal to 18 time units, for path c,d,e,a it
is equal to 21. The cycle time of the circuit with delays is equal to 21.

A retiming r on a given graph assigns an integer to each node of the graph. This
assignment transforms the edge register count as follows: Assume that edge e has source
node u, target node v and register count w(e). Then, after applying retiming r, e will have
register count w′(e) = w(e)+ r(v)− r(u). Let us exemplify this technique by applying
the following retiming on the retiming graph in Fig. 16a: r(a) = 1,r(c) = −1, r is
zero for the rest of the nodes. In order to apply r(a) = 1 it is enough to remove one
register from each output edge of node a and add one register to each input edge of
a; r(c) = −1 moves register across node c in opposite direction. Fig. 16b shows the
resulting graph.

Retiming may change the cycle time and the number of registers in the circuit while
preserving its sequential behavior. In the graph in the Fig. 16b the combinational path
with the greatest delay is a,b,c. Then, the cycle time is equal to 9 + 3 + 4 = 16 time
units.

In order to describe an ES, we should be able to distinguish registers that contain
valid data (dots) from empty registers (bubbles). For this purpose, we will add a new
edge label into the retiming graph. This label represents the total number of registers
(dots and bubbles) on the edge. The register count of the retiming graph now represents
only the number of dots on the edge. Figure 16c shows an example. The empty boxes
represent registers with non-valid data (register count = 1, dot count = 0), boxes with
dots represent registers with valid data (register count = dot count = 1). There are two
combinational paths that determine the cycle time: a,b and c,d,e. The cycle time is
equal to 12 time units.

The bottom directed cycle has four dots and five registers. Therefore, it does not
produce valid data every clock cycle, but four valid data every five cycles, i.e., its
processing rate is 4/5. The effective cycle time is given by its cycle time divided by
its processing rate, this yields 12 ·5/4 = 15. This effective cycle time is better than the
one of the original non-elastic circuit which was 16 (the processing rate of a system
without bubbles is equal to one).

In this section, we show how the minimal effective cycle time of an ES represented as
a retiming graph can be found. An exact solution of the retiming and recycling problem
is specified with MILPs.
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7.2 Marked Graphs and Retiming

The retiming graph (RG) is isomorphic to a TMG. Each combinational block corre-
sponds to a node, each connection corresponds to an edge. The registers in the retiming
graph are represented by tokens in the MG. This way, the firing rules of a MG coincide
with the backward retiming rule: each time a node is retimed, registers are removed
from the input edges and added to the output edges.

Definition 10 (Retiming Graph). A RG is a TMG (N, E, R0, δ). R0 represents an ini-
tial assignment of registers with informative data (dots) to the edges of the graph.

In Sect. 3.1 basic structural properties of a MG were introduced. The retiming interpre-
tation of these properties is the following:

Retiming interpretation of liveness (Property 1, Sect. 3.1): every cycle should have at
least one register to avoid combinational cycles in the circuit netlist.

Retiming interpretation of token preservation (Property 3, Sec. 3.1): This property
has two directions. The⇒ direction corresponds to a well-known result in retiming: A
valid retiming preserves the number of registers at each cycle. The important direction
is ⇐ that provides a new result for the theory of retiming [47]: If an assignment of
registers has the same number of registers at each cycle as the initial circuit, then the
assignment is a valid retiming.

Thus, we can reduce the retiming problem to a reachability problem in MGs.
In order to represent bubbles we associate another register assignment with a RG.

Definition 11 (Retiming and recycling configuration of a RG). A retiming and recy-
cling configuration (R&R) of a RG is a register assignment R : E→ N.

An important question is: What is a valid R&R? The answer is easy: let us take any valid
retiming configuration of the RG and let us add any arbitrary number of registers (bub-
bles) to every edge. That is, set register count R as follows: R(e) = R0(e)+ k, k ∈ N.
The resulting R&R is valid. Therefore, any integer vector R that satisfies to the follow-
ing inequalities:

R≥ R̂ = R0 +C ·σ≥ 0, R, R̂ ∈ N|E| (14)

is a valid R&R. In (14), C is the incidence matrix of the RG, R̂ represents the retiming
subset of the solution (the registers containing only dots), and R represents registers
containing dots and bubbles.

A bubble in a valid R&R is represented as follows: R(e) = 1, R̂(e) = 0, e.g. edge
( f ,g) in Fig, 16c. If the edge e has two registers and only one dot then it has the fol-
lowings register counts: R(e) = 2, R̂(e) = 1. The register counts of an edge without
registers are R(e) = 0, R̂(e) = 0. The difference between both vectors, R− R̂, represents
the vector of registers containing the bubbles introduced by recycling.

Let τ(R) be the cycle time of R, i.e., the greatest delay of the path without registers
in the RG. For instance, the cycle time of the R&R in Fig. 16c is equal to 12. Let
Θ(R) be the throughput of R, i.e., the minimal dots to registers ratio of all directed
cycles of the RG1. The cycle ratios for the top and bottom cycles of Fig. 16c are 1 and

1 This throughput model assumes that backward arcs of the corresponding EMG do not con-
straint the throughput. This always can be achieved by proper buffer sizing (see Sect. 4).
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4/5, respectively. Therefore, Θ(R) = 4/5. The main performance measure of R is the
effective cycle time. The effective cycle time of a R (ξ(R)) is the ratio of its cycle time
and the throughput.

Now we give an overview of the strategy to find, for a given RG, a R with the minimal
effective cycle time. The reader can refer to [47] for details.

7.3 Basic MILPs for Retiming and Recycling

Given a cycle time τc and a throughput Θc,0 < Θc ≤ 1. A registers assignment R is
a valid R&R with τ(R) ≤ τc and Θ(R) ≥ Θc if it satisfies the following three sets of
inequalities:

RR(τc,Θc)≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R≥ R0 +C ·σ1 ≥ 0,

R ·Θc ≤ R0 +C ·σ2,

Path Constraints(R,τc),
R ∈ N|E|,σ1 ∈ Z|N|

(15)

The first set of the inequalities guarantees that R is valid (see (14)). The second set of
the inequalities guarantees that the throughput of R is at least equal to Θc. They can
be derived using MG performance theory [24] or the linear programming formulation
of the minimal cycle ratio problem [28]. The Path Constraints(R,τc) is a set of
linear inequalities that guarantees the delay of all combinational paths is at most τc [47].

7.4 Minimal Effective Cycle Time

Among all R&R configurations that satisfy constraints (15), the ones with minimal
cycle time can be found with the following MILP:

Minimize τ :

subject to RR(τ,Θc)
(16)

Similarly, the throughput can be maximized (cycle time τc is constant):

Maximize Θ :

subject to RR(τc,Θ)
(17)

Problem (17) with Θ being a variable is neither linear nor convex. However, the through-
put constraints in (15) can be modified as follows:

1
Θ
·R0 ≥ R +C ·σ′2

Then, after substituting x = 1
Θ , the throughput can be maximized with the following

MILP:

Minimize x :

R≥ R0 +C ·σ1 ≥ 0,

R0 · x≥ R +C ·σ2,

Path Constraints(R,τc),

R ∈ N|E|,σ1 ∈ Z|N|

(18)
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Let R(τ,Θ) be a R&R with cycle time τ and throughput Θ. We say that R1(τ1,Θ1)
is dominated by R2(τ2,Θ2) iff Θ1 = Θ2 and τ2 < τ1. If R1 is dominated by R2 then
ξ(R1) > ξ(R2) and R1 cannot provide the minimal effective cycle time. We say that
R(τ,Θ) is non-dominated if it is not dominated by any another configuration. Using
MILPs (16) and (18) we can find all non-dominated R&R configurations and conse-
quently the minimal effective cycle time.

8 Conclusions and Open Problems

When the behavior derived from the structure of a circuit is modeled at a low level
of granularity, concepts like concurrency and elasticity appear in a natural way. The
analysis of such systems can take advantage of the strong analogy between the structure
and the behavior of a circuit and the structure and token flow of a Petri net.

This paper has reviewed several problems of elastic circuits that can be abstracted
and reduced to problems in Petri nets, mainly marked graphs. The variability of com-
putation and communication latencies and the increasing demand in relaxing the strong
requirements imposed by global clocks open the door to new design paradigms with
more complex models.

This is an area in which the sinergism between two worlds can be exploited. The
existing knowledge in the theory of Petri nets can be effectively used to model and
reason about problems that are actually emerging in the area of digital circuit design.

Open Problems. Several extensions of the models used in this paper can lead to a more
accurate description of an elastic system. Two main extensions on the model might
be considered for this purpose: (a) introduce early evaluated nodes in the problems
considered in Sects. 4, 5 and 7, and (b) incorporate variable latencies in the nodes of
the EMG.

An EMG extended with variable latencies on the nodes captures the variability of
some nodes, by associating a probability function to the delays of the transitions. The
methods proposed in this paper must be revised to handle these extensions.
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40. Júlvez, J., Cortadella, J., Kishinevsky, M.: Performance analysis of concurrent systems with
early evaluation. In: Proc. International Conf. Computer-Aided Design (ICCAD) (November
2006)

41. Brej, C.F., Garside, J.D.: Early output logic using anti-tokens. In: Int. Workshop on Logic
Synthesis, pp. 302–309 (May 2003)

42. Reese, R.B., Thornton, M.A., Traver, C., Hemmendinger, D.: Early evaluation for perfor-
mance enhancement in phased logic. IEEE Transactions on Computer-Aided Design 24(4),
532–550 (2005)

43. Yakovlev, A., Kishinevsky, M., Kondratyev, A., Lavagno, L., Pietkiewicz-Koutny, M.: On the
models for asynchronous circuit behaviour with OR causality. Formal Methods in System
Design 9(3), 189–233 (1996)

44. Wolff, R.W.: Stochastic Modeling and the Theory of Queues. Prentice-Hall, Englewood
Cliffs (1989)

45. Chiola, G., Anglano, C., Campos, J., Colom, J.M., Silva, M.: Operational analysis of timed
Petri nets and application to the computation of performance bounds. In: Baccelli, F., Jean-
Marie, A., Mitrani, I. (eds.) Quantitative Methods in Parallel Systems, pp. 161–174. Springer,
Heidelberg (1995); Also appears in Procs. PNPM 1993 (1993)

46. Leiserson, C.E., Saxe, J.B.: Retiming synchronous circuitry. Algorithmica 6(1), 5–35 (1991)
47. Bufistov, D., Cortadella, J., Kishinevsky, M., Sapatnekar, S.: A general model for perfor-

mance optimization of sequential systems. In: Proc. International Conf. Computer-Aided
Design (ICCAD), pp. 362–369 (November 2007)



Author Index

Aalst, Wil M.P. van der 152

Baldan, Paolo 199
Bonet, Blai 172
Boukala, Malika 104
Brabrand, Claus 1
Bufistov, Dmitry 221

Cabac, Lawrence 86
Calzolai, Francesco 54
Carmona, Josep 221
Corradini, Andrea 199
Corro Ramos, Isaac 134
Cortadella, Jordi 221

Dahmani, Djaouida 104
De Nicola, Rocco 54
Denz, Nicolas 86
Di Bucchianico, Alessandro 134
Dongen, Boudewijn F. van 71

Eisentraut, Christian 35

Hakobyan, Lusine 134
Haslum, Patrik 172
Hee, Kees van 119, 134
Hermanns, Holger 35
Hickmott, Sarah 172
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